cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A193412 1..9 followed by the canyon numbers A134970.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 101, 202, 212, 303, 313, 323, 404, 414, 424, 434, 505, 515, 525, 535, 545, 606, 616, 626, 636, 646, 656, 707, 717, 727, 737, 747, 757, 767, 808, 818, 828, 838, 848, 858, 868, 878, 909, 919, 929, 939, 949, 959, 969, 979, 989, 2012
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2011

Keywords

Comments

For n > 9 the structure of digits represents an abyss. The first digit is equal to the last digit (1 - 9). The first digits are in decreasing order. The last digits are in increasing order. The numbers only have one smallest digit. This sequence is finite. The final term is 9876543210123456789.
Superset of crater numbers (A193409). Subset of valley numbers (A193413).

Examples

			Illustration using 654356:
  6  .  .  .  .  6
  .  5  .  .  5  .
  .  .  4  .  .  .
  .  .  .  3  .  .
		

Crossrefs

A135602 Right-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

101, 121, 212, 232, 323, 343, 434, 454, 545, 565, 656, 676, 767, 787, 878, 898, 989, 1012, 1210, 1232, 2101, 2123, 2321, 2343, 3212, 3234, 3432, 3454, 4323, 4345, 4543, 4565, 5434, 5456, 5654, 5676, 6545, 6567, 6765, 6787, 7656, 7678, 7876, 7898, 8767, 8789, 8987
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents a right angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 19 digits: 9876543210123456789.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . . . . . . 9
  . 8 . . . . . . . . . . . . . . . 8 .
  . . 7 . . . . . . . . . . . . . 7 . .
  . . . 6 . . . . . . . . . . . 6 . . .
  . . . . 5 . . . . . . . . . 5 . . . .
  . . . . . 4 . . . . . . . 4 . . . . .
  . . . . . . 3 . . . . . 3 . . . . . .
  . . . . . . . 2 . . . 2 . . . . . . .
  . . . . . . . . 1 . 1 . . . . . . . .
  . . . . . . . . . 0 . . . . . . . . .
		

Crossrefs

Programs

  • Python
    ups = list(tuple(range(i, j)) for i in range(9) for j in range(i+2, 11))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    s |= set(L[:-1] + R[::-1] for L in ups for R in ups if L[-1] == R[-1])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:47]) # Michael S. Branicky, Aug 02 2022

A135601 Acute-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

102, 103, 104, 105, 106, 107, 108, 109, 120, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184, 185, 186, 187, 190, 191, 192, 193, 194, 195
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an acute angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. This sequence is finite. The final term has 14 digits: 98765432102468.

Examples

			Illustration using the final term of this sequence:
  9 . . . . . . . . . . . . .
  . 8 . . . . . . . . . . . 8
  . . 7 . . . . . . . . . . .
  . . . 6 . . . . . . . . 6 .
  . . . . 5 . . . . . . . . .
  . . . . . 4 . . . . . 4 . .
  . . . . . . 3 . . . . . . .
  . . . . . . . 2 . . 2 . . .
  . . . . . . . . 1 . . . . .
  . . . . . . . . . 0 . . . .
		

Crossrefs

Programs

  • Python
    progressions = set(tuple(range(i, j+1, d)) for i in range(10) for d in range(1, 10-i) for j in range(i+d, 10))
    s = set()
    for left in progressions:
        for right in progressions:
            dl, dr = left[1] - left[0], right[1] - right[0]
            if dl + dr > 2:
                if left[-1] == right[-1]: s.add(left[:-1] + right[::-1])
                if left[0] == right[0]: s.add(left[::-1] + right[1:])
    afull = sorted(int("".join(map(str, t))) for t in s if t[0] != 0)
    print(afull[:53]) # Michael S. Branicky, Aug 02 2022

Formula

If a(n) does not end in 0, then A004086(a(n)) is a term; if a(n) does not start with 9, then A061601(a(n)) is a term. - Michael S. Branicky, Aug 02 2022

A135603 Obtuse-angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 110, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 133, 134, 136, 137, 138, 139, 144, 145, 146, 148, 149, 155, 156, 157, 158, 166, 167, 168, 169, 177, 178, 179, 188, 189, 199, 200, 211, 220, 221, 223, 224, 225, 226, 227, 228, 229, 233
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an obtuse angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right.
For each k >= 11, there are 354 k-digit terms. - Michael S. Branicky, Aug 03 2022

Examples

			Illustration of the number 9753111:
  9 . . . . . .
  . . . . . . .
  . 7 . . . . .
  . . . . . . .
  . . 5 . . . .
  . . . . . . .
  . . . 3 . . .
  . . . . . . .
  . . . . 1 1 1
  . . . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def ok3(n):
        if n < 100: return False
        d = list(map(int, str(n)))
        m1, m2 = (d[1]-d[0], d[-1]-d[-2])
        return len({m1, m2}) == 2 and m1*m2 >= 0
    def agen():
        seeds = [k for k in range(100, 1000) if ok3(k)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 54))) # Michael S. Branicky, Aug 03 2022

Extensions

a(49) and beyond from Michael S. Branicky, Aug 03 2022

A134971 Canyon primes.

Original entry on oeis.org

101, 313, 727, 757, 919, 929, 3023, 3203, 7027, 7057, 7127, 7207, 7237, 7247, 7307, 7417, 7457, 7507, 7517, 7537, 7547, 7607, 9029, 9049, 9059, 9109, 9209, 9239, 9319, 9349, 9419, 9439, 9479, 9539, 9619, 9629, 9649, 9679, 9689, 9719, 9739, 9749, 9769, 9829
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Comments

Intersection of prime numbers and Canyon numbers ("Canyon primes"). This sequence is finite because A134970 is. There are 9237 Canyon primes (compare to 116505 Canyon numbers total). The largest Canyon prime (and last element of this sequence) is a(9237) = 98765432101456789.

Examples

			Illustration of 751367 as a Canyon prime:
. . . . . .
. . . . . .
7 . . . . 7
. . . . 6 .
. 5 . . . .
. . . . . .
. . . 3 . .
. . . . . .
. . 1 . . .
. . . . . .
		

Crossrefs

Cf. A000040, A134951, Primes in A134970.

Programs

  • Mathematica
    S = {}; c = 1;
    For[n = 1, n <= 9, n++,
      L = 2 n - 1;
      d = Join[Reverse[Range[1, n - 1]], Range[0, n - 1]];
      If[Mod[n, 2] != 0 && n != 5,
       For[j = 1, j < 2^L, j++,
         Dig = d[[Map[#[[1]] &, Position[IntegerDigits[j, 2, L], 1]]]];
         min = Min[Dig];
         If[Length[Position[Dig, min]] == 1,
          p = FromDigits[Join[{n}, Dig, {n}]];
          If[PrimeQ[p], S = Append[S, p]];
          ];
         ];
       ];
      ]; (* Kellen Myers, Jan 18 2011 *)
  • Python
    from sympy import isprime
    from itertools import chain, combinations as combs
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    afull = sorted(filter(isprime, (int("".join(map(str, t))) for t in s if t[0] == t[-1])))
    print(afull[:44]) # Michael S. Branicky, Jan 16 2023

Formula

A000040 INTERSECT A134970.

Extensions

All terms past 3203, more comments, etc. by Kellen Myers, Jan 18 2011

A135600 Angled numbers with an internal digit as the vertex.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147
Offset: 1

Views

Author

Omar E. Pol, Dec 02 2007

Keywords

Comments

The structure of digits represents an angle. The vertex is an internal digit. In the graphic representation the points are connected by imaginary line segments from left to right. The last acute-angled number of this sequence has 14 digits: 98765432102468. The last right-angled number of this sequence has 19 digits: 9876543210123456789. All 3-digit numbers are terms of this sequence. Next terms are 1000, 1012, 1024, 1036, 1048, 1110, 1111, 1112, 1113, 1114, ....
For each k >= 20, there are 363 k-digit terms: 354 obtuse-angled and 9 straight-angled.- Michael S. Branicky, Aug 03 2022

Examples

			The acute-angled number 12342 (see A135601):
  . . . . .
  . . . 4 .
  . . 3 . .
  . 2 . . 2
  1 . . . .
The right-angled number 12343 (see A135602):
  . . . . .
  . . . 4 .
  . . 3 . 3
  . 2 . . .
  1 . . . .
The obtuse-angled number 12344 (see A135603):
  . . . . .
  . . . 4 4
  . . 3 . .
  . 2 . . .
  1 . . . .
The straight-angled (or straight-line) number 12345 (see A135643):
  . . . . 5
  . . . 4 .
  . . 3 . .
  . 2 . . .
  1 . . . .
		

Crossrefs

Programs

  • PARI
    \\ See PARI link. David A. Corneth, Aug 02 2022
    
  • Python
    from itertools import count, islice
    def agen():
        seeds = [k for k in range(100, 1000)]
        for digits in count(4):
            yield from sorted(seeds)
            new, pow10 = set(), 10**(digits-1)
            for q in seeds:
                d = list(map(int, str(q)))
                e1, e2 = d[0] - (d[1]-d[0]), d[-1] + (d[-1]-d[-2])
                if 9 >= e1 > 0: new.add(e1*pow10 + q)
                if 9 >= e2 >= 0: new.add(10*q + e2)
            seeds = new
    print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 03 2022

A193413 Valley numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 202, 212, 222, 303, 313, 323, 333, 404, 414, 424, 434, 444, 505, 515, 525, 535, 545, 555, 606, 616, 626, 636, 646, 656, 666, 707, 717, 727, 737, 747, 757, 767, 777, 808, 818, 828, 838, 848, 858, 868, 878, 888, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999, 1001
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2011

Keywords

Comments

For n > 10 the structure of digits represents a valley. The first digit is equal to the last digit (1 - 9). The first digits are in nonincreasing order. The last digits are in nondecreasing order. The numbers may have more than one smallest digit. Sequence is infinite.
Superset of crater numbers (A193409) and A193412.
See valley numbers in base 2 (A193414 and A193415).

Examples

			Illustration using 6543333346:
  6 . . . . . . . . 6
  . 5 . . . . . . . .
  . . 4 . . . . . 4 .
  . . . 3 3 3 3 3 . .
		

Crossrefs

Extensions

More terms extended by definition by Jaroslav Krizek, Jul 27 2011

A183086 Generalized canyon numbers.

Original entry on oeis.org

101, 102, 103, 104, 105, 106, 107, 108, 109, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 213, 214, 215, 216, 217, 218, 219, 301, 302, 303, 304, 305, 306, 307, 308, 309, 312, 313, 314, 315, 316, 317, 318, 319, 323, 324, 325, 326, 327, 328, 329, 401, 402, 403, 404, 405, 406, 407, 408, 409, 412
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2011

Keywords

Comments

Supersequence of A134970. The structure of digits represents a canyon (a deep valley between cliffs). The first digits are in decreasing order. The last digits are in increasing order. There is only one smaller digit which represents the bottom of the canyon. But the restriction that both cliffs are at same level (first digit equal to the final digit) is dropped here.
This sequence is finite. The final term is 9876543210123456789.
Question: How many terms are there in this sequence?
There are 347489 terms in the sequence. They may be generated in seconds using the posted Python program. - Michael S. Branicky, Aug 02 2022

Examples

			Illustration of 751378 as a generalized canyon number:
  . . . . . .
  . . . . . 8
  7 . . . 7 .
  . . . . . .
  . 5 . . . .
  . . . . . .
  . . . 3 . .
  . . . . . .
  . . 1 . . .
  . . . . . .
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations as combs
    ups = list(chain.from_iterable(combs(range(10), r) for r in range(2, 11)))
    s = set(L[::-1] + R[1:] for L in ups for R in ups if L[0] == R[0])
    afull = sorted(int("".join(map(str, t))) for t in s)
    print(afull[:60]) # Michael S. Branicky, Aug 02 2022

A193409 Crater numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 101, 212, 323, 434, 545, 656, 767, 878, 989, 21012, 32123, 43234, 54345, 65456, 76567, 87678, 98789, 3210123, 4321234, 5432345, 6543456, 7654567, 8765678, 9876789, 432101234, 543212345, 654323456, 765434567, 876545678, 987656789, 54321012345, 65432123456, 76543234567, 87654345678, 98765456789, 6543210123456, 7654321234567, 8765432345678, 9876543456789, 765432101234567, 876543212345678, 987654323456789, 87654321012345678, 98765432123456789, 9876543210123456789
Offset: 1

Views

Author

Jaroslav Krizek, Jul 25 2011

Keywords

Comments

For n>9 the structure of digits represents a crater. The first and last digit of each term are identical. The first digits are in consecutive decreasing order. The last digits are in consecutive increasing order. The numbers have only one smallest digit. The number of digits is odd. This sequence is finite with 55 terms. The final term is 9876543210123456789.
Finite subset of primes of this sequence: 2, 3, 5, 7, 101, 7654567.
There are 11 - k terms with 2*k - 1 digits. - Omar E. Pol, Aug 04 2011

Examples

			Illustration using a(32)=7654567:
  7  .  .  .  .  .  7
  .  6  .  .  .  6  .
  .  .  5  .  5  .  .
  .  .  .  4  .  .  .
		

Crossrefs

Subset of palindromes (A002113), A193412 and valley numbers (A193413).
Cf. A134810, A134970. - Omar E. Pol, Aug 04 2011

Programs

  • Mathematica
    Flatten[Table[FromDigits/@(Join[Reverse[Rest[#]],#]&/@Partition[ Range[ 0,9],n,1]),{n,10}]] (* Harvey P. Dale, Dec 27 2018 *)
  • Python
    ups = [tuple(range(i, j)) for i in range(10) for j in range(i+1, 11)]
    afull = sorted(int("".join(map(str, u[::-1] + u[1:]))) for u in ups)
    print(afull) # Michael S. Branicky, Aug 02 2022

Extensions

Corrected and extended by Jaroslav Krizek, Jul 27 2011
Showing 1-9 of 9 results.