cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A220212 Convolution of natural numbers (A000027) with tetradecagonal numbers (A051866).

Original entry on oeis.org

0, 1, 16, 70, 200, 455, 896, 1596, 2640, 4125, 6160, 8866, 12376, 16835, 22400, 29240, 37536, 47481, 59280, 73150, 89320, 108031, 129536, 154100, 182000, 213525, 248976, 288666, 332920, 382075, 436480, 496496, 562496, 634865, 714000, 800310, 894216, 996151
Offset: 0

Views

Author

Bruno Berselli, Dec 08 2012

Keywords

Comments

Partial sums of A172073.
Apart from 0, all terms are in A135021: a(n) = A135021(A034856(n+1)) with n>0.

Crossrefs

Cf. convolution of the natural numbers (A000027) with the k-gonal numbers (* means "except 0"):
k= 2 (A000027 ): A000292;
k= 3 (A000217 ): A000332 (after the third term);
k= 4 (A000290 ): A002415 (after the first term);
k= 5 (A000326 ): A001296;
k= 6 (A000384*): A002417;
k= 7 (A000566 ): A002418;
k= 8 (A000567*): A002419;
k= 9 (A001106*): A051740;
k=10 (A001107*): A051797;
k=11 (A051682*): A051798;
k=12 (A051624*): A051799;
k=13 (A051865*): A055268.
Cf. similar sequences with formula n*(n+1)*(n+2)*(k*n-k+2)/12 listed in A264850.

Programs

  • Magma
    A051866:=func; [&+[(n-k+1)*A051866(k): k in [0..n]]: n in [0..37]];
    
  • Magma
    I:=[0,1,16,70,200]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    A051866[k_] := k (6 k - 5); Table[Sum[(n - k + 1) A051866[k], {k, 0, n}], {n, 0, 37}]
    CoefficientList[Series[x (1 + 11 x) / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+11*x)/(1-x)^5.
a(n) = n*(n+1)*(n+2)*(3*n-2)/6.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*(3*sqrt(3)*Pi + 27*log(3) - 17)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(6*sqrt(3)*Pi - 64*log(2) + 37)/80. (End)

A370770 Triangle read by rows: T(n,k) is the number of k-trees with n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 6, 5, 2, 1, 1, 1, 1, 11, 12, 5, 2, 1, 1, 1, 1, 23, 39, 15, 5, 2, 1, 1, 1, 1, 47, 136, 58, 15, 5, 2, 1, 1, 1, 1, 106, 529, 275, 64, 15, 5, 2, 1, 1, 1, 1, 235, 2171, 1505, 331, 64, 15, 5, 2, 1, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 01 2024

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   1,   1;
  1,   1,   1,   1;
  1,   2,   1,   1,  1;
  1,   3,   2,   1,  1,  1;
  1,   6,   5,   2,  1,  1, 1;
  1,  11,  12,   5,  2,  1, 1, 1;
  1,  23,  39,  15,  5,  2, 1, 1, 1;
  1,  47, 136,  58, 15,  5, 2, 1, 1, 1;
  1, 106, 529, 275, 64, 15, 5, 2, 1, 1, 1;
  ...
		

Crossrefs

Cf. A135021 (labeled version), A370771, A370772, A370773.

Formula

T(n,k) = A370771(n,k) + A370772(n,k) - A370773(n,k).

A036362 Number of labeled 3-trees with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 10, 200, 5915, 229376, 10946964, 618435840, 40283203125, 2968444272640, 243926836708126, 22100985366992896, 2187905889450121295, 234881024000000000000, 27172548942138551952680, 3369317755618569294053376, 445726953911853022186520169
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Problem 1.13(b) with k=3.

Crossrefs

Column 4 of A135021.
Cf. A000272 (labeled trees), A036361 (labeled 2-trees), this sequence (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).

Programs

  • Maple
    [ seq(binomial(n,3)*(3*n-8)^(n-5), n=1..20) ];
  • Mathematica
    Table[Binomial[n,3](3n-8)^(n-5),{n,20}] (* Harvey P. Dale, Dec 31 2023 *)
  • Python
    def A036362(n): return int(n*(n - 2)*(n - 1)*(3*n - 8)**(n - 5)//6) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = binomial(n, 3)*(3*n-8)^(n-5).
Number of labeled k-trees on n nodes is binomial(n, k) * (k(n-k)+1)^(n-k-2).

A036506 Number of labeled 4-trees with n nodes.

Original entry on oeis.org

0, 0, 0, 1, 1, 15, 455, 20230, 1166886, 82031250, 6768679170, 639276644655, 67876292150095, 7992910154350121, 1032869077119140625, 145221924661653841820, 22060305511905816000860, 3599313659344525384083060, 627583654087024080928783956
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Problem 1.13(b) with k=4.

Crossrefs

Column 5 of A135021.
Cf. A000272 (labeled trees), A036361 (labeled 2-trees), A036362 (labeled 3-trees), A078793 (unlabeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).

Programs

  • Python
    def A036506(n): return int(n*(n - 3)*(n - 2)*(n - 1)*(4*n - 15)**(n - 6)//24) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = C(n,4)*(4*n-15)^(n-6).
Number of labeled k-trees on n nodes is binomial(n, k) * (k(n-k)+1)^(n-k-2).

A036361 Number of labeled 2-trees with n nodes.

Original entry on oeis.org

0, 1, 1, 6, 70, 1215, 27951, 799708, 27337500, 1086190605, 49162945645, 2496308717826, 140489907594114, 8678436279296875, 583701359488329915, 42457773984656284920, 3320786296452525792376, 277898747312921495246937, 24775177557380767822265625
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30.

Crossrefs

Column 3 of A135021.
Cf. A000272 (labeled trees), this sequence (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).

Programs

  • Maple
    A036361:=n->binomial(n, 2)*(2*n-3)^(n-4): seq(A036361(n), n=1..30);
  • Mathematica
    Table[Binomial[n,2](2n-3)^(n-4),{n,20}] (* Harvey P. Dale, Nov 24 2011 *)
  • Python
    def A036361(n): return int(n*(n - 1)*(2*n - 3)**(n - 4)//2) # Chai Wah Wu, Feb 03 2022

Formula

Number of labeled k-trees on n nodes is binomial(n, k) * (k(n-k)+1)^(n-k-2).
Showing 1-5 of 5 results.