cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135085 a(n) = A000110(2^n).

Original entry on oeis.org

1, 2, 15, 4140, 10480142147, 128064670049908713818925644, 172134143357358850934369963665272571125557575184049758045339873395
Offset: 0

Views

Author

Thomas Wieder, Nov 18 2007, Nov 19 2007

Keywords

Comments

Number of set partitions of all subsets of a set, Bell(2^n).

Examples

			Let S={1,2,3,...,n} be a set of n elements and let SU be the set of all subsets of S including the empty set. The number of elements of SU is |SU| = 2^n. Now form all possible set partitions from SU including the empty set. This gives a set W and its number of elements is |W| = sum((stirling2(2^n,k)), k=0..2^n) = Bell(2^n).
For S={1,2} we have SU = { {}, {1}, {2}, {1,2} } and W =
{
{{{}}, {1}, {2}, {1, 2}},
{{2}, {1, 2}, {{}, {1}}},
{{1}, {1, 2}, {{}, {2}}},
{{1}, {2}, {{}, {1, 2}}},
{{{}}, {1, 2}, {{1}, {2}}},
{{{1}, {2}}, {{}, {1, 2}}},
{{1, 2}, {{}, {1}, {2}}},
{{{}}, {2}, {{1}, {1, 2}}},
{{{1}, {1, 2}}, {{}, {2}}},
{{2}, {{}, {1}, {1, 2}}},
{{{}}, {1}, {{2}, {1, 2}}},
{{{2}, {1, 2}}, {{}, {1}}},
{{1}, {{}, {2}, {1, 2}}},
{{{}}, {{1}, {2}, {1, 2}}},
{{{}, {1}, {2}, {1, 2}}}
}
and |W| = 15.
		

Crossrefs

Programs

  • Maple
    ZahlDerMengenAusMengeDerZerlegungenEinerMenge:=proc() local n,nend,arg,k,w; nend:=5; for n from 0 to nend do arg:=2^n; w[n]:=sum((stirling2(arg,k)), k=0..arg); od; print(w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9],w[10]); end proc;
  • Mathematica
    Table[BellB[2^n],{n,0,10}] (* Geoffrey Critzer, Jan 03 2014 *)
  • Python
    from sympy import bell
    def A135085(n): return bell(2**n) # Chai Wah Wu, Jun 22 2022

Formula

a(n) = |W| = Sum_{k=0..2^n} Stirling2(2^n,k) = Bell(2^n), where Stirling2(n) is the Stirling number of the second kind and Bell(n) is the Bell number.
a(n) = exp(-1) * Sum_{k>=0} k^(2^n)/k!. - Ilya Gutkovskiy, Jun 13 2019

A137736 Number of set partitions of [n*(n-1)/2].

Original entry on oeis.org

1, 1, 1, 5, 203, 115975, 1382958545, 474869816156751, 6160539404599934652455, 3819714729894818339975525681317, 139258505266263669602347053993654079693415, 359334085968622831041960188598043661065388726959079837
Offset: 0

Views

Author

Thomas Wieder, Feb 09 2008

Keywords

Comments

Among n persons we have (n^2-n)/2 undirected relations. We can set partition these relations into (up to) a(n) = Bell((n^2-n)/2) sets.
The number of graphs on n labeled nodes is A006125(n) = Sum_{k=0..(n^2-n)/2} binomial((n^2-n)/2,k).
See also A066655 which equals A066655(n) = Sum_{k=0..(n^2-n)/2} P((n^2-n)/2,k) where P(n) is the number of integer partitions of n.
See also A135084 = A000110(2^n-1) and A135085 = A000110(2^n).

Examples

			a(4) = Bell(6) = 203.
		

Crossrefs

Programs

  • Maple
    seq(combinat[bell](n*(n-1)/2), n=0..12);
  • Mathematica
    a[n_]=BellB[n(n-1)/2];Array[a,12,0] (* James C. McMahon, Jun 02 2025 *)

Formula

a(n) = Bell(n*(n-1)/2) = A000110(n*(n-1)/2).
a(n) = Sum_{k=0..(n^2-n)/2} Stirling2((n^2-n)/2,k).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 24 2024
Showing 1-2 of 2 results.