A135098 Duplicate of A136488.
1, 2, 5, 10, 22, 44, 92, 184, 376, 752, 1520, 3040, 6112, 12224, 24512, 49024, 98176, 196352, 392960, 785920, 1572352, 3144704, 6290432, 12580864, 25163776, 50327552, 100659200, 201318400, 402644992, 805289984, 1610596352, 3221192704
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Programs
-
Mathematica
Table[2^((n - 5)/2)*( 3*2^((n + 1)/2) - (1 - (-1)^n) - (1 + (-1)^n)*Sqrt[2] ), {n, 1, 50}] (* or *) LinearRecurrence[{2, 2, -4}, {1, 2, 5}, 25] (* G. C. Greubel, Sep 23 2016 *)
-
PARI
a(n)=([0,1,0; 0,0,1; -4,2,2]^n*[1;2;5])[1,1] \\ Charles R Greathouse IV, Sep 23 2016
Formula
From R. J. Mathar, Feb 15 2008: (Start)
O.g.f.: (2*x+1) / (2*(2*x^2-1)) -3 / (2*(2*x-1)).
G.f.: (1 - x)*(1 + x) / ((1 - 2*x)*(1 - 2*x^2)). - Arkadiusz Wesolowski, Oct 24 2013
From G. C. Greubel, Sep 23 2016: (Start)
a(n) = 2^((n-4)/2)*( 6*2^(n/2) - (1 + (-1)^n) - (1 - (-1)^n)*sqrt(2) ).
E.g.f.: (1/2)*( 3*exp(2*x) - cosh(sqrt(2)*x) - sqrt(2)*sinh(sqrt(2)*x) ). (End) [corrected by Jason Yuen, Sep 25 2024]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Apr 07 2021
Extensions
More terms from R. J. Mathar, Feb 15 2008
Comments