cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135098 Duplicate of A136488.

Original entry on oeis.org

1, 2, 5, 10, 22, 44, 92, 184, 376, 752, 1520, 3040, 6112, 12224, 24512, 49024, 98176, 196352, 392960, 785920, 1572352, 3144704, 6290432, 12580864, 25163776, 50327552, 100659200, 201318400, 402644992, 805289984, 1610596352, 3221192704
Offset: 0

Views

Author

Paul Curtz, Feb 12 2008

Keywords

Comments

Previous name was: First differences of A135094.
Apart to offset same as A136488.

Crossrefs

Cf. A135094, A136488 (same up to offset).

Programs

  • Mathematica
    Table[2^((n - 5)/2)*( 3*2^((n + 1)/2) - (1 - (-1)^n) - (1 + (-1)^n)*Sqrt[2] ), {n, 1, 50}] (* or *) LinearRecurrence[{2, 2, -4}, {1, 2, 5}, 25] (* G. C. Greubel, Sep 23 2016 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -4,2,2]^n*[1;2;5])[1,1] \\ Charles R Greathouse IV, Sep 23 2016

Formula

From R. J. Mathar, Feb 15 2008: (Start)
O.g.f.: (2*x+1) / (2*(2*x^2-1)) -3 / (2*(2*x-1)).
a(n) = (-A016116(n+1) +A007283(n)) / 2 . (End)
G.f.: (1 - x)*(1 + x) / ((1 - 2*x)*(1 - 2*x^2)). - Arkadiusz Wesolowski, Oct 24 2013
From G. C. Greubel, Sep 23 2016: (Start)
a(n) = 2^((n-4)/2)*( 6*2^(n/2) - (1 + (-1)^n) - (1 - (-1)^n)*sqrt(2) ).
E.g.f.: (1/2)*( 3*exp(2*x) - cosh(sqrt(2)*x) - sqrt(2)*sinh(sqrt(2)*x) ). (End) [corrected by Jason Yuen, Sep 25 2024]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Apr 07 2021

Extensions

More terms from R. J. Mathar, Feb 15 2008