A107769
a(n) = (A001333(n+1) - 2*A005409(floor((n+3)/2)) - 1) / 4.
Original entry on oeis.org
0, 1, 2, 8, 19, 54, 130, 334, 806, 1995, 4816, 11746, 28357, 68748, 165972, 401388, 969036, 2341141, 5652014, 13649228, 32952151, 79563330, 192082870, 463752730, 1119598130, 2703006111, 6525634012, 15754412038, 38034515209, 91823775384, 221682203880, 535188986904, 1292060510616, 3119311948585
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63, eq 25).
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).
-
Table[(LucasL[n+2, 2] -4*Fibonacci[Floor[n/2]+2, 2] +2)/8, {n,0,40}] (* G. C. Greubel, May 24 2021 *)
-
[(lucas_number2(n+2,2,-1) -4*lucas_number1(2+(n//2),2,-1) +2)/8 for n in (0..40)] # G. C. Greubel, May 24 2021
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 17, 17, 41, 41, 99, 99, 239, 239, 577, 577, 1393, 1393, 3363, 3363, 8119, 8119, 19601, 19601, 47321, 47321, 114243, 114243, 275807, 275807, 665857, 665857, 1607521, 1607521, 3880899, 3880899, 9369319, 9369319, 22619537, 22619537, 54608393
Offset: 1
The pieces illustrating a(3) = 3 are:
AAA BB. .CC
AAA .BB CC.
Original entry on oeis.org
1, 2, 4, 6, 11, 16, 28, 40, 69, 98, 168, 238, 407, 576, 984, 1392, 2377, 3362, 5740, 8118, 13859, 19600, 33460, 47320, 80781, 114242, 195024, 275806, 470831, 665856, 1136688, 1607520, 2744209, 3880898, 6625108, 9369318, 15994427, 22619536, 38613964, 54608392
Offset: 0
Triangle A152719 and row sums:
1; ............................. sum = 1
1, 1; .......................... sum = 2
1, 2, 1; ....................... sum = 4
1, 2, 2, 1; ................... sum = 6
1, 2, 5, 2, 1; ............... sum = 11
1, 2, 5, 5, 2, 1; ............ sum = 16
1, 2, 5, 12, 5, 2, 1; ......... sum = 28
1, 2, 5, 12, 12, 5, 2, 1; ...... sum = 40
-
Table[Sum[Fibonacci[1+Min[k, n-k], 2], {k,0,n}], {n,0,45}] (* G. C. Greubel, May 21 2021 *)
-
my(x='x+O('x^44)); Vec((1+x)/((1-2*x^2-x^4)*(1-x))) \\ Joerg Arndt, May 22 2021
-
def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
def a(n): return sum(Pell(1+min(k, n-k)) for k in (0..n))
[a(n) for n in (0..45)] # G. C. Greubel, May 21 2021
A193530
Expansion of (1 - 2*x - 2*x^2 + 3*x^3 + x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)).
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 31, 66, 159, 363, 876, 2065, 4985, 11915, 28765, 69156, 166957, 402373, 971414, 2343519, 5657755, 13654969, 32966011, 79577190, 192116331, 463786191, 1119678912, 2703086893, 6525829037, 15754607063, 38034986041, 91824246216, 221683340569, 535190123593, 1292063254826
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
- Index entries for linear recurrences with constant coefficients, signature (3,1,-7,3,-1,1,1).
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-2*x-2*x^2 +3*x^3+x^5)/((1-x)*(1-2*x-x^2)*(1-2*x^2-x^4)) )); // Vincenzo Librandi, Aug 28 2016
-
f:=n->if n mod 2 = 0 then (1/4)*(A001333(n-2)+A001333((n-2)/2)+A001333((n-4)/2)+1) else (1/4)*(A001333(n-2)+A001333((n-1)/2)+A001333((n-3)/2)+1); fi; # produces the sequence with a different offset
-
LinearRecurrence[{3,1,-7,3,-1,1,1}, {1,1,2,3,7,13,31}, 40] (* Vincenzo Librandi, Aug 28 2016 *)
Table[(2 +LucasL[n, 2] +2*(1+(-1)^n)*Fibonacci[(n+2)/2, 2] + 2*(1-(-1)^n)*Fibonacci[(n+1)/2, 2])/8, {n, 0, 40}] (* G. C. Greubel, May 21 2021 *)
-
@CachedFunction
def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
def A193530(n): return (1 + Pell(n+1) - Pell(n) + (1 + (-1)^n)*Pell((n+2)/2) + (1-(-1)^n)*Pell((n+1)/2) )/4
[A193530(n) for n in (0..40)] # G. C. Greubel, May 21 2021
Showing 1-4 of 4 results.
Comments