A135173 a(n) = 5^p - 3^p - 2^p, where p = prime(n).
12, 90, 2850, 75810, 48648930, 1219100610, 762810181890, 19072323542370, 11920834803510690, 186264446292181467330, 4656612255401848810530, 72759575691550215703252290, 45474735052173413319557911170, 1136868376887903321203168728290, 710542735733511371371429275935010
Offset: 1
Keywords
Examples
a(4) = 75810 because the 4th prime number is 7, 5^7 = 78125, 3^7 = 2187, 2^7 = 128 and 78125-2187-128 = 75810.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..200
Programs
-
Magma
[5^p-3^p-2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
-
Maple
a:= n-> (p-> 5^p-3^p-2^p)(ithprime(n)): seq(a(n), n=1..15); # Alois P. Heinz, May 30 2025
-
Mathematica
5^# - 3^# - 2^# &/@Prime[Range[20]] (* G. C. Greubel, Sep 30 2016 *)
-
PARI
a(n,p=prime(n))=5^p - 3^p - 2^p \\ Charles R Greathouse IV, Sep 30 2016
Formula
a(n) = 5^p - 3^p - 2^p, with p = A000040(n).
Extensions
More terms from Vincenzo Librandi, Dec 14 2010