A052880
Expansion of e.g.f.: LambertW(1-exp(x))/(1-exp(x)).
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 845287, 18182926, 447797646, 12429760889, 384055045002, 13075708703910, 486430792977001, 19632714343389296, 854503410602781782, 39898063449977239323, 1989371798838577172796, 105503454201101084456182, 5930110732782743218645271
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),S=Set(C),C=Prod(B,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0,
(m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Jul 15 2022
-
CoefficientList[Series[-LambertW[-E^x+1]/(E^x-1), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]];
(* b = A135302 *) b[0, 0] = 1; b[, 0] = 0; b[n, k_] := SeriesCoefficient[ f[k, x], {x, 0, n}]*n!;
a[n_] := b[n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 14 2019 *)
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling2(m, k)*(A+x*O(x^n))^k)*x^m/m!)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2013
-
x='x+O('x^30); Vec(serlaplace(-lambertw(-exp(x)+1)/(exp(x)-1))) \\ G. C. Greubel, Feb 19 2018
A135313
Triangle of numbers T(n,k) (n>=0, n>=k>=0) of transitive reflexive early confluent binary relations R on n labeled elements where k=max_{x}(|{y : xRy}|), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 12, 13, 0, 1, 61, 106, 75, 0, 1, 310, 1105, 1035, 541, 0, 1, 1821, 12075, 16025, 11301, 4683, 0, 1, 11592, 141533, 267715, 239379, 137774, 47293, 0, 1, 80963, 1812216, 4798983, 5287506, 3794378, 1863044, 545835, 0, 1, 608832, 25188019, 92374107, 124878033, 105494886, 64432638, 27733869, 7087261
Offset: 0
T(3,3) = 13 because there are 13 relations of the given kind for 3 elements: (1) 1R2, 2R1, 1R3, 3R1, 2R3, 3R2; (2) 1R2, 1R3, 2R3, 3R2; (3) 2R1, 2R3, 1R3, 3R1; (4) 3R1, 3R2, 1R2, 2R1; (5) 2R1, 3R1, 2R3, 3R2; (6) 1R2, 3R2, 1R3, 3R1; (7) 1R3, 2R3, 1R2, 2R1; (8) 1R2, 2R3, 1R3; (9) 1R3, 3R2, 1R2; (10) 2R1, 1R3, 2R3; (11) 2R3, 3R1, 2R1; (12) 3R1, 1R2, 3R2; (13) 3R2, 2R1, 3R1; (the reflexive relationships 1R1, 2R2, 3R3 have been omitted for brevity).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 1, 12, 13;
0, 1, 61, 106, 75;
0, 1, 310, 1105, 1035, 541;
0, 1, 1821, 12075, 16025, 11301, 4683;
...
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
Columns k=0-10 give:
A000007,
A057427,
A218092,
A218093,
A218094,
A218095,
A218096,
A218097,
A218098,
A218099,
A218091.
Main diagonal and lower diagonals give:
A000670,
A218111,
A218112,
A218103,
A218104,
A218105,
A218106,
A218107,
A218108,
A218109,
A218110.
-
t:= proc(k) option remember; `if`(k<0, 0,
unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x))
end:
tt:= proc(k) option remember;
unapply((t(k)-t(k-1))(x), x)
end:
T:= proc(n, k) option remember;
coeff(series(tt(k)(x), x, n+1), x, n)*n!
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k - m, x], {m, 1, k}]]; (* a = A135302 *) a[0, 0] = 1; a[, 0] = 0; a[n, k_] := SeriesCoefficient[f[k, x], {x, 0, n}]*n!; t[n_, 0] := a[n, 0]; t[n_, k_] := a[n, k] - a[n, k-1]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2013, after A135302 *)
A135312
Number of transitive reflexive binary relations R on n labeled elements where |{y : xRy}| <= 2 for all x.
Original entry on oeis.org
1, 1, 4, 13, 62, 311, 1822, 11593, 80964, 608833, 4910786, 42159239, 383478988, 3678859159, 37087880754, 391641822541, 4319860660448, 49647399946049, 593217470459314, 7354718987639959, 94445777492433516, 1254196823154143191, 17198114810490326714, 243191242578584519333
Offset: 0
a(2) = 4 because there are 4 relations of the given kind for 2 elements: 1R1, 2R2; 1R1, 2R2, 1R2; 1R1, 2R2, 2R1; 1R1, 2R2, 1R2, 2R1.
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
u:= proc(n) option remember; add(binomial(n, i)*(n-i)^i, i=0..n) end:
a:= n-> add(binomial(n, 2*i)*doublefactorial(2*i-1)*u(n-2*i), i=0..iquo(n, 2)):
seq(a(n), n=0..50);
-
a[n_] := SeriesCoefficient[Exp[x*Exp[x] + x^2/2], {x, 0, n}]*n!; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014 *)
A210911
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 3 for all x.
Original entry on oeis.org
1, 1, 4, 26, 168, 1416, 13897, 153126, 1893180, 25796852, 383636151, 6177688914, 106969864696, 1980478817526, 39015578535585, 814416108606566, 17947777613632128, 416233580676722424, 10129555365300697267, 258028441032419619786, 6864011282184757297896
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
gf:= exp(x*exp(x*exp(x)+x^2/2)+x^2/2*exp(x)+x^3/6):
a:= n-> n!* coeff(series(gf,x,n+1), x, n):
seq(a(n), n=0..30);
-
t[0, ] = 1; t[k, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k-m, x], {m, 1, k}]]; a[0, 0] = 1; a[, 0] = 0; a[n, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n, 3], {n, 0, 30} ] (* Jean-François Alcover, Feb 04 2014, after A135302 and Alois P. Heinz *)
A210912
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 4 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2451, 29922, 420841, 6692163, 118170959, 2296688956, 48661358989, 1115587992521, 27499790373121, 725031761113038, 20351018228318061, 605726610363853513, 19050158234570819809, 631097355371645795620, 21961423837720097681425
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
gf:= exp(x *exp(x *exp(x *exp(x)+x^2/2) +x^2/2*exp(x) +x^3/6)
+x^2/2 *exp(x*exp(x) +x^2/2) +x^3/6 *exp(x) +x^4/24):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
t[0, ] = 1; t[k, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k - m, x], {m, 1, k}]]; a[0, 0] = 1; a[, 0] = 0; a[n, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n, 4], {n, 0, 30} ] (* Jean-François Alcover, Feb 04 2014, after A135302 and Alois P. Heinz *)
A210913
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 5 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 41223, 660220, 11979669, 243048992, 5448497434, 133595966164, 3555887814602, 102064563003898, 3141580135645330, 103198691666336823, 3602725068242695657, 133174089439019869924, 5195463138498447345478, 213295995976349091757666
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x))
end:
gf:= t(5)(x):
a:= n-> n!*coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
t[0, ] = 1; t[k, x_] := t[k, x] = Exp[Sum[x^m/m!*t[k - m, x], {m, 1, k}]]; a[0, 0] = 1; a[, 0] = 0; a[n, k_] := SeriesCoefficient[t[k, x], {x, 0, n}]*n!; Table[a[n, 5], {n, 0, 30} ] (* Jean-François Alcover, Feb 04 2014, after A135302 and Alois P. Heinz *)
A210914
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 6 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 797994, 15774047, 348543878, 8517326911, 228090873748, 6641805913833, 208882903017855, 7054977212140236, 254641097826922363, 9780088146805724737, 398202474048334638184, 17130262219179411169927, 776303072938412423933278
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
gf:= t(6)(x):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
-
t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[6][x]; a[n_] := n!*SeriesCoefficient [gf, {x, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 13 2014, translated from Maple *)
A210915
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 7 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 845287, 17637091, 412976516, 10702355041, 304058582059, 9396887340381, 313853270626962, 11265355519125229, 432420217726582213, 17674492093095982705, 766343475354260380416, 35129831766609666284023, 1697466558811335003294745
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
gf:= t(7)(x):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[7][x]; a[n_] := n!*SeriesCoefficient[gf, {x, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, translated from Maple *)
A210916
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 8 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 845287, 18182926, 440710385, 11876274391, 351546957499, 11330575607067, 394862762014644, 14792903605828298, 592835563146850723, 25306351970600498930, 1146305330627242918543, 54914971513967144548105, 2773947252964889935144249
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x))
end:
gf:= t(8)(x):
a:= n-> n!* coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[8][x]; a[n_] := n!*SeriesCoefficient[gf, {x, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, translated from Maple *)
A210917
Number of transitive reflexive early confluent binary relations R on n labeled elements where |{y : xRy}| <= 9 for all x.
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 845287, 18182926, 447797646, 12327513326, 374460094229, 12417692352452, 445937963850159, 17230880407496706, 712587605616915013, 31399448829720502520, 1468521294946336416768, 72650756455913144620677, 3790469182850937732166657
Offset: 0
- A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.
-
t:= proc(k) option remember;
`if`(k<0, 0, unapply(exp(add(x^m/m!*t(k-m)(x), m=1..k)), x))
end:
gf:= t(9)(x):
a:= n-> n!*coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
-
t[k_] := t[k] = If[k<0, 0, Function[x, Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]]]]; gf = t[9][x]; a[n_] := n!*SeriesCoefficient[gf, {x, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2014, translated from Maple *)
Showing 1-10 of 19 results.
Comments