cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135364 First column of a triangle - see Comments lines.

Original entry on oeis.org

1, 2, 3, 7, 17, 40, 93, 216, 502, 1167, 2713, 6307, 14662, 34085, 79238, 184206, 428227, 995507, 2314273, 5380032, 12507057, 29075380, 67592058, 157132471, 365288677, 849193147, 1974134558, 4589306057, 10668842202
Offset: 0

Views

Author

Paul Curtz, Dec 09 2007

Keywords

Comments

...1;
...2,...1;
...3,...3,...1;
...7,...5,...4,...1;
..17,..10,...7,...5,...1;
..40,..24,..13,...9,...6,...1;
..93,..57,..31,..16,..11,...7,...1;
From the second, the sum of a row gives the first term of the following one. Diagonal differences are the first term upon. First column is a(n).

Crossrefs

Programs

  • Magma
    I:=[3,7,17]; [1,2] cat [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..51]]; // G. C. Greubel, Apr 19 2021
    
  • Maple
    a:= n-> `if`(n=0, 1, (<<7|3|2>> .<<3|1|0>, <-2|0|1>, <1|0|0>>^(n-1))[1, 3]):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    LinearRecurrence[{3,-2,1}, {1,2,3,7,17}, 51] (* G. C. Greubel, Oct 11 2016; Apr 19 2021 *)
  • Sage
    @CachedFunction
    def A095263(n): return sum( binomial(n+j+2, 3*j+2) for j in (0..n//2) )
    def A135364(n): return 1 if n==0 else 2*A095263(n-1) -3*A095263(n-2) +2*A095263(n-3)
    [A135364(n) for n in (0..50)] # G. C. Greubel, Apr 19 2021

Formula

From Richard Choulet, Jan 06 2008: (Start)
a(n+1) = a(n) + a(n-1) + (n-1)*a(1) + (n-2)*a(2) + ... + 2*a(n-2) for n>=3.
O.g.f.: 1 + x*(2 - 3*x + 2*x^2) / (1 - 3*x + 2*x^2 - x^3).
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n). (End)
a(n) = A034943(n) + A034943(n+1). - R. J. Mathar, Apr 09 2008
a(0) = 1, a(n) = term (1,3) in the 1 X 3 matrix [7,3,2].[3,1,0; -2,0,1; 1,0,0]^(n-1) (n>0). - Alois P. Heinz, Jul 24 2008
a(n) = 2*A095263(n-1) -3*A095263(n-2) +2*A095263(n-3) with a(0) = 1. - G. C. Greubel, Apr 19 2021

Extensions

More terms from Richard Choulet, Jan 06 2008