cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135450 a(n) = 3*a(n-1) + 4*a(n-2) - a(n-3) + 3*a(n-4) + 4*a(n-5).

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 63, 252, 1008, 4033, 16132, 64528, 258111, 1032444, 4129776, 16519105, 66076420, 264305680, 1057222719, 4228890876, 16915563504, 67662254017, 270649016068, 1082596064272, 4330384257087, 17321537028348
Offset: 0

Views

Author

Paul Curtz, Dec 14 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 1, 4}; Do[AppendTo[a, 3*a[[ -1]] + 4*a[[ -2]] - a[[ -3]] + 3*a[[ -4]] + 4*a[[ -5]]], {25}]; a (* Stefan Steinerberger, Dec 31 2007 *)
    LinearRecurrence[{3, 4, -1, 3, 4}, {0, 0, 0, 1, 4}, 25] (* G. C. Greubel, Oct 14 2016 *)
    LinearRecurrence[{4,0,-1,4},{0,0,0,1},40] (* Harvey P. Dale, Jan 31 2021 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 4,-1,0,4]^n*[0;0;0;1])[1,1] \\ Charles R Greathouse IV, Oct 14 2016

Formula

a(n+1) - 4*a(n) = hexaperiodic 0, 0, 1, 0, 0, -1, A131531.
a(n) + a(n+3) = 1, 4, 16, 64 = 2^2n = A000302.
a(n) = (1/65)*4^n + (1/15)*(-1)^(n+1) + (2/39)*cos((Pi*n)/3) - (4*sqrt(3)/39) * sin((Pi*n)/3). Or, a(n) = (1/65)*(4^n + [ -1; -4; -16; 1; 4; 16]). - Richard Choulet, Dec 31 2007
O.g.f.: -x^3/[(4*x-1)*(1+x)*(x^2-x+1)]. - R. J. Mathar, Jan 07 2008

Extensions

More terms from Stefan Steinerberger, Dec 31 2007