cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135518 Generalized repunits in base 15.

Original entry on oeis.org

1, 16, 241, 3616, 54241, 813616, 12204241, 183063616, 2745954241, 41189313616, 617839704241, 9267595563616, 139013933454241, 2085209001813616, 31278135027204241, 469172025408063616, 7037580381120954241, 105563705716814313616, 1583455585752214704241
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)gmail.com), Feb 19 2008

Keywords

Comments

Primes in this sequence are given in A006033.
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=15, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Partial sums are in A014898. Also, the sequence is related to A014930 by A014930(n) = n*a(n) - Sum_{i=1..n-1}( a(i) ). - Bruno Berselli, Nov 06 2012

Examples

			For n=4, a(4) = 15^3+15^2+15^1+1 = 3375+225+15+1 = 3616.
For n=6, a(6) = 1*6 + 14*15 + 14^2*20 + 14^3*15 + 14^4*6 + 14^5*1 = 813616. - _Bruno Berselli_, Nov 12 2015
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,1],15],{n,20}] (* or *) LinearRecurrence[{16,-15},{1,16},20] (* Harvey P. Dale, Jul 08 2013 *)
  • Maxima
    A135518(n):=(15^n-1)/14$ makelist(A135518(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(15^n-1)/14 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    def a(n): return int('1'*n, 15)
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jan 16 2021
  • Sage
    [gaussian_binomial(n,1,15) for n in range(1,15)] # Zerinvary Lajos, May 28 2009
    
  • Sage
    [(15^n-1)/14 for n in (1..30)] # Bruno Berselli, Nov 12 2015
    

Formula

a(n) = (15^n - 1)/14.
a(n) = 15*a(n-1) + 1 with n>1, a(1)=1. - Vincenzo Librandi, Aug 03 2010
G.f.: x/((1-x)*(1-15*x)). - Bruno Berselli, Nov 07 2012
a(1)=1, a(2)=16; for n>2, a(n) = 16*a(n-1) - 15*a(n-2). - Harvey P. Dale, Jul 08 2013
a(n) = Sum_{i=0...n-1} 14^i*binomial(n,n-1-i). - Bruno Berselli, Nov 12 2015
E.g.f.: (1/14)*(exp(15*x) - exp(x)). - G. C. Greubel, Oct 17 2016