A135519 Generalized repunits in base 14.
1, 15, 211, 2955, 41371, 579195, 8108731, 113522235, 1589311291, 22250358075, 311505013051, 4361070182715, 61054982558011, 854769755812155, 11966776581370171, 167534872139182395, 2345488209948553531
Offset: 1
Examples
a(4) = 2955 because (14^4-1)/13 = 38416/13 = 2955. For n=6, a(6) = 1*6 + 13*15 + 169*20 + 2197*15 + 28561*6 + 371293*1 = 579195. - _Bruno Berselli_, Nov 12 2015
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..873
- Index entries for linear recurrences with constant coefficients, signature (15,-14).
Crossrefs
Programs
-
Mathematica
Table[FromDigits[PadRight[{}, n, 1], 14], {n, 20}] (* or *) LinearRecurrence[{15, -14}, {1, 15}, 20] (* Harvey P. Dale, Aug 29 2016 *)
-
Maxima
A135519(n):=(14^n-1)/13$ makelist(A135519(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
Sage
[gaussian_binomial(n,1,14) for n in range(1,15)] # Zerinvary Lajos, May 28 2009
-
Sage
[(14^n-1)/13 for n in (1..30)] # Bruno Berselli, Nov 12 2015
Formula
a(n) = (14^n - 1)/13.
a(n) = 14*a(n-1) + 1 for n>1, a(1)=1. - Vincenzo Librandi, Aug 03 2010
a(n) = Sum_{i=0..n-1} 13^i*binomial(n,n-1-i). - Bruno Berselli, Nov 12 2015
From G. C. Greubel, Oct 17 2016: (Start)
G.f.: x/((1-x)*(1-14*x)).
E.g.f.: (1/13)*(exp(14*x) - exp(x)). (End)
Comments