cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135556 Squares of numbers not divisible by 3: a(n) = A001651(n)^2.

Original entry on oeis.org

1, 4, 16, 25, 49, 64, 100, 121, 169, 196, 256, 289, 361, 400, 484, 529, 625, 676, 784, 841, 961, 1024, 1156, 1225, 1369, 1444, 1600, 1681, 1849, 1936, 2116, 2209, 2401, 2500, 2704, 2809, 3025, 3136, 3364, 3481, 3721, 3844, 4096, 4225, 4489, 4624, 4900
Offset: 1

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

From Fermat's Little Theorem all these numbers are congruent to 1 mod 3.
From Peter Bala, Jan 26 2025: (Start)
The sequence terms are the exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(3*n))*(1 - q^(18*n))^2/( (1 - q^(6*n))*(1 - q^(9*n)) ) = q - q^4 - q^16 + q^25 + q^49 - q^64 - q^100 + + - - ....
Also, the exponents of q in the expansion of q*Product_{n >= 1} (1 - q^(6*n))^5/(1 - q^(3*n))^2 = q + 2*q^4 - 4*q^16 - 5*q^25 + 7*q^49 + 8*q^64 -10*q^100 - 11*q^121 + + - - .... See Lemke Oliver, Theorem 1.2. (End)

Crossrefs

Partial sums of A298028.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1}, {1,4,16,25,49}, 25] (* or *) Table[(18*n^2-6*(-1)^n*n-18*n+3*(-1)^n+5)/8, {n,1,25}] (* G. C. Greubel, Oct 19 2016 *)
    Flatten[Partition[Range[70],2,3,{1,1},{}]]^2 (* Harvey P. Dale, Jun 19 2018 *)
  • PARI
    isok(n) = issquare(n) && (n % 3 == 1); \\ Michel Marcus, Nov 02 2013
    
  • PARI
    Vec(-x*(1+3*x+10*x^2+3*x^3+x^4) / ( (1+x)^2*(x-1)^3 ) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

G.f.: -x*(1+3*x+10*x^2+3*x^3+x^4) / ((1+x)^2*(x-1)^3). - R. J. Mathar, Feb 16 2011
From Colin Barker, Jan 26 2016: (Start)
a(n) = (18*n^2-6*(-1)^n*n-18*n+3*(-1)^n+5)/8.
a(n) = (9*n^2-12*n+4)/4 for n even.
a(n) = (9*n^2-6*n+1)/4 for n odd. (End)
E.g.f.: (1/8)*( (3 + 6*x)*exp(-x) - 8 + (5 + 18*x^2)*exp(x)). - G. C. Greubel, Oct 19 2016
Sum_{n>=1} 1/a(n) = 4*Pi^2/27 (A214549). - Amiram Eldar, Dec 19 2020