cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182254 a(n) = primorial(n) mod n!.

Original entry on oeis.org

0, 0, 0, 0, 18, 30, 510, 1470, 22890, 284550, 3171630, 18486930, 45347610, 4254260010, 2349577230, 371965003410, 9252750236730, 190224835871070, 221717289063270, 14855058367239090, 1662934646118135390, 45974266913148043470, 4510191947325194130
Offset: 0

Views

Author

Alex Ratushnyak, Apr 21 2012

Keywords

Comments

a(n) mod 6 = 0 and a(n) mod 30 = 0, n<>4. - Gary Detlefs, May 02 2012

Examples

			a(5) = (2*3*5*7*11) mod (1*2*3*4*5) = 2310 mod 120 = 30.
		

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, n}]; Table[Mod[primorial[n], n!], {n, 0, 30}] (* T. D. Noe, Apr 21 2012 *)
    With[{nn=30},Join[{0},Mod[#[[2]],#[[1]]]&/@Transpose[{Range[nn]!, FoldList[ Times, Prime[Range[nn]]]}]]] (* Harvey P. Dale, May 26 2016 *)

Formula

a(n) = A002110(n) mod A000142(n).

A271387 Numerator of prime(n)#/n!, where prime(n)# is the prime factorial function.

Original entry on oeis.org

1, 2, 3, 5, 35, 77, 1001, 2431, 46189, 1062347, 30808063, 86822723, 3212440751, 10131543907, 435656388001, 20475850236047, 1085220062510491, 3766351981654057, 229747470880897477, 810162134158954261, 57521511525285752531, 4199070341345859934763, 331726556966322934846277
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2016

Keywords

Examples

			1, 2, 3, 5, 35/4, 77/4, 1001/24, 2431/24, 46189/192, 1062347/1728, 30808063/17280, 86822723/17280, 3212440751/207360, 10131543907/207360, 435656388001/2903040, ...
a(8) = 46189, because prime(8)#/8! = (2*3*5*7*11*13*17*19)/(1*2*3*4*5*6*7*8) = 46189/192.
		

Crossrefs

Cf. A000040, A000142, A000720, A002110, A007947, A034386, A049614 (denominator of prime(n)#/n!), A090586, A135568.

Programs

  • Mathematica
    Table[Numerator[Product[Prime@ k, {k, n}]/n!], {n, 0, 22}] (* Michael De Vlieger, Apr 08 2016 *)
  • PARI
    a(n) = numerator(prod(k=1, n, prime(k))/n!); \\ Michel Marcus, Apr 09 2016

Formula

a(n) = prime(n)#/GCD(prime(n)#, n!), where GCD(a, b) is the greatest common divisor.
a(n) = prime(n)#/prime(pi(n))#, where pi(n) is the number of primes <= n.
a(n) = A002110(n)/A034386(n) = A002110(n)/A002110(A000720(n)) = A002110(n)/A007947(A000142(n)).
Showing 1-2 of 2 results.