A182254
a(n) = primorial(n) mod n!.
Original entry on oeis.org
0, 0, 0, 0, 18, 30, 510, 1470, 22890, 284550, 3171630, 18486930, 45347610, 4254260010, 2349577230, 371965003410, 9252750236730, 190224835871070, 221717289063270, 14855058367239090, 1662934646118135390, 45974266913148043470, 4510191947325194130
Offset: 0
a(5) = (2*3*5*7*11) mod (1*2*3*4*5) = 2310 mod 120 = 30.
-
primorial[n_] := Product[Prime[i], {i, n}]; Table[Mod[primorial[n], n!], {n, 0, 30}] (* T. D. Noe, Apr 21 2012 *)
With[{nn=30},Join[{0},Mod[#[[2]],#[[1]]]&/@Transpose[{Range[nn]!, FoldList[ Times, Prime[Range[nn]]]}]]] (* Harvey P. Dale, May 26 2016 *)
A271387
Numerator of prime(n)#/n!, where prime(n)# is the prime factorial function.
Original entry on oeis.org
1, 2, 3, 5, 35, 77, 1001, 2431, 46189, 1062347, 30808063, 86822723, 3212440751, 10131543907, 435656388001, 20475850236047, 1085220062510491, 3766351981654057, 229747470880897477, 810162134158954261, 57521511525285752531, 4199070341345859934763, 331726556966322934846277
Offset: 0
1, 2, 3, 5, 35/4, 77/4, 1001/24, 2431/24, 46189/192, 1062347/1728, 30808063/17280, 86822723/17280, 3212440751/207360, 10131543907/207360, 435656388001/2903040, ...
a(8) = 46189, because prime(8)#/8! = (2*3*5*7*11*13*17*19)/(1*2*3*4*5*6*7*8) = 46189/192.
-
Table[Numerator[Product[Prime@ k, {k, n}]/n!], {n, 0, 22}] (* Michael De Vlieger, Apr 08 2016 *)
-
a(n) = numerator(prod(k=1, n, prime(k))/n!); \\ Michel Marcus, Apr 09 2016
Showing 1-2 of 2 results.
Comments