cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135683 Duplicate of A005451.

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 8, 9, 10, 1, 12, 1, 14, 15, 16, 1, 18, 1, 20, 21, 22, 1, 24, 25, 26, 27, 28, 1, 30, 1, 32, 33, 34, 35, 36, 1, 38, 39, 40, 1, 42, 1, 44, 45, 46, 1, 48, 49, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 60, 1, 62, 63
Offset: 1

Views

Author

Mohammad K. Azarian, Dec 01 2007

Keywords

Comments

Previous name was: a(n) = 1 if n is a prime number, otherwise, a(n) = n.

References

  • Paulo Ribenboim, The little book of big primes, Springer 1991, p. 106.

Programs

  • Magma
    [IsPrime(n) select 1 else n: n in [1..70]]; // Vincenzo Librandi, Feb 22 2013
    
  • Maple
    seq(denom((1 + (n-1)!)/n), n=1..80); # G. C. Greubel, Nov 22 2022
  • Mathematica
    Table[If[PrimeQ[n], 1, n], {n, 70}] (* Vincenzo Librandi, Feb 22 2013 *)
    a[n_] := ((n-1)! + 1)/n - Floor[(n-1)!/n] // Denominator; Table[a[n] , {n, 1, 63}] (* Jean-François Alcover, Jul 17 2013, after Minac's formula *)
  • Sage
    def A135683(n):
        if n == 4: return n
        f = factorial(n-1)
        return 1/((f + 1)/n - f//n)
    [A135683(n) for n in (1..63)]   # Peter Luschny, Oct 16 2013

Formula

a(n) = A088140(n), n >= 3. - R. J. Mathar, Oct 28 2008
a(n) = gcd(n, (n!*n!!)/n^2). - Lechoslaw Ratajczak, Mar 09 2019
a(n) = A005451(n), for n >= 2. - G. C. Greubel, Nov 22 2022