cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135713 a(n) = n*(n+1)*(4*n+1)/2.

Original entry on oeis.org

0, 5, 27, 78, 170, 315, 525, 812, 1188, 1665, 2255, 2970, 3822, 4823, 5985, 7320, 8840, 10557, 12483, 14630, 17010, 19635, 22517, 25668, 29100, 32825, 36855, 41202, 45878, 50895, 56265, 62000, 68112, 74613, 81515, 88830, 96570, 104747, 113373, 122460, 132020
Offset: 0

Views

Author

N. J. A. Sloane, Mar 05 2008

Keywords

Comments

This sequence is related to A045944 by a(n) = n*A045944(n)-Sum_{i=0..n-1} A045944(i); this is the case d=6 in the identity n^2*(d*n+d-2)/2 - sum(k*(d*k+d-2)/2, k=0..n-1) = n*(n+1)*(2*d*n+d-3)/6 . - Bruno Berselli, Nov 19 2010
Bisection (even part) of A002717. See the Conway and Guy reference. - Wolfdieter Lang, Apr 16 2020

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 83.

Crossrefs

Bisection of A002717 (even part).

Programs

  • Magma
    [n*(n+1)*(4*n+1)/2: n in [0..40]];  // Bruno Berselli, Aug 23 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0, 5, 27, 78}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
    Table[n*(n+1)*(4*n+1)/2,{n,0,25}] (* G. C. Greubel, Oct 29 2016 *)
    Table[PolygonalNumber[n](4n+1),{n,0,40}] (* Harvey P. Dale, Apr 26 2025 *)

Formula

O.g.f.: x*(7*x+5)/(x-1)^4. - R. J. Mathar, Apr 22 2008.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n>3. - Bruno Berselli, Nov 19 2010
a(-n-1) = -A051895(n). - Bruno Berselli, Aug 23 2011
E.g.f.: (1/2)*x*(10 + 17*x + 4*x^2)*exp(x). - G. C. Greubel, Oct 29 2016
Sum_{n>=1} 1/a(n) = 2*(5 - 2*Pi/3 - 4*log(2)) = 0.26603235073404654... - Ilya Gutkovskiy, Oct 29 2016