cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A135977 Mersenne composites (A065341) with exactly 3 prime factors.

Original entry on oeis.org

536870911, 8796093022207, 140737488355327, 9007199254740991, 2361183241434822606847, 9444732965739290427391, 604462909807314587353087
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

Formula

a(n) = 2^A344515(n) - 1. - Amiram Eldar, May 23 2021

A135976 Mersenne composites (A065341) with exactly 2 prime factors.

Original entry on oeis.org

2047, 8388607, 137438953471, 2199023255551, 576460752303423487, 147573952589676412927, 9671406556917033397649407, 158456325028528675187087900671, 2535301200456458802993406410751
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135976 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) = 2) then
       RETURN (i)
    fi: end: [ seq(A135976(n), n=1..26) ]; # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
  • PARI
    forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = 2^A135978(n) - 1. - Amiram Eldar, May 23 2021

A135980 Numbers k such that the Mersenne number 2^prime(k)-1 is composite.

Original entry on oeis.org

5, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

A135979 is a subsequence of this sequence.

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], AppendTo[k, n]], {n, 1, 40}]; k
    m = PrimePi @ MersennePrimeExponent @ Range[13]; Complement[Range[m[[-1]]], m] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(k) = !isprime(2^prime(k)-1); \\ Michel Marcus, Mar 12 2020

Formula

prime(a(n)) = A054723(n).
a(n) = pi(A054723(n)).

Extensions

More terms from Amiram Eldar, Mar 12 2020

A135386 Mersenne composites A065341 with 4 or more prime factors.

Original entry on oeis.org

10384593717069655257060992658440191, 2854495385411919762116571938898990272765493247, 182687704666362864775460604089535377456991567871
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135386 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) > 3) then
       RETURN (i)
    fi: end: seq(A135386(n), n=1..37); # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d >3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
Showing 1-4 of 4 results.