cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140745 Smallest prime p such that the Mersenne number A000225(p) = 2^p - 1 has exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 11, 29, 157, 113, 223, 491, 431, 397
Offset: 1

Views

Author

Lekraj Beedassy, Jul 12 2008

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 223, pp 63-4, Ellipse Paris 2008.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{p=0},Until[PrimeOmega[2^Prime[p]-1]==n,p++];Prime[p]];Array[a,6] (* James C. McMahon, Jul 14 2025 *)
  • PARI
    a(n) = forprime(p=2, oo, if(bigomega(2^p-1)==n, return(p))); \\ Jinyuan Wang, Aug 10 2021

A136034 a(n) = smallest number k such that number of distinct prime factors of 2^k-1 is exactly n.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 24, 40, 36, 48, 88, 60, 72, 150, 132, 120, 156, 144, 200, 204, 210, 180, 324, 476, 288, 300, 432, 396, 480, 360, 468, 576, 700, 504, 420, 648, 540, 660, 792, 720
Offset: 0

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Comments

First occurrence of n in A046800.

Crossrefs

Programs

  • Mathematica
    With[{pn1=PrimeNu[2^Range[800]-1]},Table[Position[pn1,n,1,1],{n,0,40}]]//Flatten (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    a(n) = my(k=1); while (omega(2^k-1) != n, k++); k; \\ Michel Marcus, Jan 09 2023

Extensions

More terms from Julián Aguirre, Feb 04 2013
a(31)-a(39) from Chai Wah Wu, Oct 03 2019
a(0) = 1 inserted by Michel Marcus, Jan 09 2023
Showing 1-2 of 2 results.