cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A264043 Numbers n such that n and n+3 are consecutive semiprimes.

Original entry on oeis.org

6, 22, 35, 46, 62, 74, 82, 115, 155, 166, 206, 259, 262, 295, 323, 355, 358, 362, 395, 466, 478, 482, 502, 511, 559, 562, 583, 586, 611, 623, 626, 671, 703, 718, 731, 734, 746, 755, 763, 799, 835, 838, 862, 866, 886, 895, 914, 923, 955, 979, 982
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Examples

			6 and 9 are 2nd and 3rd semiprimes, or 6=A001358(2) and 9=A001358(3);
22=A001358(8) and 25=A001358(9).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,1000}], 4,1],?(#=={1,0,0,1}&)]] (* _Harvey P. Dale, Feb 08 2016 *)
  • PARI
    for(n=1, 1e3, if(bigomega(n) == 2 && bigomega(n+3) == 2 && bigomega(n+1) !=2 && bigomega(n+2) !=2, print1(n", "))) \\ Altug Alkan, Nov 02 2015
    
  • PARI
    is(n)=if(n%4==2, isprime(n/2) && bigomega(n+3)==2 && bigomega(n+1)!=2, n%4==3 && isprime((n+3)/2) && bigomega(n)==2 && bigomega(n+2)!=2) \\ Charles R Greathouse IV, Nov 02 2015

Formula

a(n) >> n log n. - Charles R Greathouse IV, Nov 02 2015

A264044 Numbers n such that n and n+4 are consecutive semiprimes.

Original entry on oeis.org

10, 51, 58, 65, 87, 111, 129, 209, 249, 274, 291, 305, 335, 377, 382, 403, 407, 447, 454, 485, 489, 493, 497, 529, 538, 629, 681, 699, 713, 749, 767, 781, 785, 803, 831, 889, 901, 917, 939, 951, 961, 985, 989, 1007, 1037, 1073, 1115, 1191, 1207
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1)=10=A131109(k=4).
Subsequence of A175648: a(1)=10=A175648(2), a(2)=51=A175648(7), a(3)=58=A175648(8), etc. - Zak Seidov, Dec 20 2017

Examples

			10=A001358(4) and 14=A001358(5).
		

Crossrefs

Programs

  • Maple
    B:= select(numtheory:-bigomega=2, [$1..2000]):
    B[select(t ->B[t+1]-B[t]=4, [$1..nops(B)-1])]; # Robert Israel, Dec 21 2017
  • Mathematica
    Select[Partition[Select[Range[1250], PrimeOmega@ # == 2 &], 2, 1], Differences@ # == {4} &][[All, 1]] (* Michael De Vlieger, Dec 20 2017 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,1300}],{1,0,0,0,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2020 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(n+4)==2 && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 \\ Charles R Greathouse IV, Nov 02 2015

A264045 Numbers n such that n and n+5 are consecutive semiprimes.

Original entry on oeis.org

69, 77, 106, 161, 178, 221, 254, 309, 314, 329, 341, 386, 398, 417, 422, 473, 554, 662, 674, 689, 758, 794, 934, 974, 998, 1094, 1121, 1149, 1169, 1214, 1294, 1502, 1517, 1522, 1541, 1569, 1673
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1)=69=A131109(k=5).

Examples

			a(1)=69=A001358(24) and a(1)+k=74=A001358(25).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Partition[Table[If[PrimeOmega[n]==2,1,0],{n,2000}],6,1], ?(#=={1,0,0,0,0,1}&)]] (* _Harvey P. Dale, Dec 16 2015 *)
  • PARI
    is(n)=if(n%4==1, isprime((n+5)/2) && bigomega(n)==2, n%4==2 && isprime(n/2) && bigomega(n+5)==2) && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 && bigomega(n+4)!=2 \\ Charles R Greathouse IV, Nov 02 2015

Formula

a(n) >> n log n. - Charles R Greathouse IV, Nov 02 2015

A264046 Numbers k such that k and k+6 are consecutive semiprimes.

Original entry on oeis.org

15, 123, 365, 371, 505, 545, 573, 591, 649, 707, 807, 843, 943, 1067, 1159, 1247, 1357, 1405, 1529, 1555, 1633, 1739, 1745, 1829, 1843, 1897, 1909, 1985, 2149, 2159, 2209, 2285, 2329, 2353, 2363, 2407, 2413, 2463, 2501, 2643, 2773, 2779
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1) = 15 = A131109(k=6).

Examples

			15 = A001358(6) and 21 = A001358(7).
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Select[Range[3000],PrimeOmega[#]==2&],2,1],#[[2]]-#[[1]]==6&][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    is(n)=if(bigomega(n)!=2 || bigomega(n+6)!=2, return(0)); for(i=1,5,if(bigomega(n+i)==2, return(0))); 1 \\ Charles R Greathouse IV, Nov 02 2015

A133609 Numbers k such that k, k+2 and k+4 are consecutive semiprimes.

Original entry on oeis.org

183, 287, 319, 411, 413, 469, 515, 533, 579, 667, 685, 789, 813, 1055, 1077, 1133, 1145, 1165, 1203, 1253, 1313, 1347, 1383, 1385, 1387, 1389, 1561, 1685, 1687, 1793, 1795, 1817, 1839, 1849, 1919, 1937, 1957, 1959, 2045, 2047, 2155, 2227, 2315, 2317
Offset: 1

Views

Author

Zak Seidov, Dec 28 2007

Keywords

Comments

Terms k in A136196 such that k+2 are also in A136196.
All terms are odd, so it is a subsequence of A161945. - Michel Marcus, Oct 15 2013

Examples

			183, 185 and 187 are 59th, 60th and 61st semiprimes,
287, 289 and 291 are 89th, 90th and 91st semiprimes,
319, 321 and 323 are 101st, 102nd and 103rd semiprimes.
		

Crossrefs

Cf. A136196.

Programs

  • Mathematica
    Select[Range[2317],AllTrue[{#,#+2,#+4},PrimeOmega[#]==2&]&&AllTrue[{#+1,#+3},PrimeOmega[#]!=2&]&] (* James C. McMahon, Mar 29 2025 *)
  • PARI
    isok(n) = (bigomega(n) == 2) && (bigomega(n+1) != 2) && (bigomega(n+2) == 2) && (bigomega(n+3) != 2) && (bigomega(n+4) == 2); \\ Michel Marcus, Oct 15 2013

A133597 Array of semiprimes, read by antidiagonals, where row k is the first of pairs of consecutive semiprimes j and j+k.

Original entry on oeis.org

9, 4, 14, 6, 49, 21, 10, 22, 55, 25, 69, 51, 35, 91, 33, 15, 77, 58, 46, 119, 34, 26, 123, 106, 65, 62, 143, 38, 169, 39, 365, 161, 87, 74, 159, 57, 146, 437, 134, 371, 178, 111, 82, 183, 85, 237, 226, 458, 187, 505, 221, 129, 115, 185, 86
Offset: 1

Views

Author

Jonathan Vos Post, Dec 27 2007

Keywords

Comments

Every semiprime occurs in this table exactly once. Note that similar tables exist for k-almost primes (integers with exactly k prime factors, with multiplicity), this being the k=2 slice of a 3-dimensional array.

Examples

			The array begins:
==================================================================
n=......1....2.....3....4....5....6....7....8....9...10
==================================================================
k=1.|...9...14....21...25...33...34...38...57...85...86....A070552
k=2.|...4...49....55...91..119..143..159..183..185..203....A136196
k=3.|...6...22....35...46...62...74...82..115..155..166....A264043
k=4.|. 10...51....58...65...87..111..129..209..249..274....A264044
k=5.|..69...77...106..161..178..221..254..309..314..329....A264045
k=6.|..15..123...365..371..505..545..573..591..649..707....A264046
k=7.|..26...39...134..187..194..267..519..566..655..771....
k=8.|.169..437...458..614..723..737..905..965.1047.1059....
k=9.|.146..226...278..346.1018.1177.1273.1546.1594.1865....
k=10|.237..427..1027.1101.1661.2723.2747.3173.3295.3669....A217030
==================================================================
		

Crossrefs

Programs

  • Mathematica
    v = Select[Range[5000], PrimeOmega[#]==2 &]; L[k_] := L[k] = v[[Select[Range[Length[v]-1], v[[#+1]] - v[[#]] == k &]]]; Flatten@ Table[ Table[L[k-j+1][[j]], {j, k}], {k, 10}] (* Giovanni Resta, Jun 20 2016 *)

Extensions

Corrected and edited by Giovanni Resta, Jun 20 2016
Showing 1-6 of 6 results.