cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136252 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3).

Original entry on oeis.org

1, 3, 5, 9, 13, 21, 29, 45, 61, 93, 125, 189, 253, 381, 509, 765, 1021, 1533, 2045, 3069, 4093, 6141, 8189, 12285, 16381, 24573, 32765, 49149, 65533, 98301, 131069, 196605, 262141, 393213, 524285, 786429, 1048573, 1572861, 2097149, 3145725, 4194301, 6291453, 8388605
Offset: 0

Views

Author

Paul Curtz, Mar 17 2008

Keywords

Comments

For n >= 2, number of n X n arrays with values that are squares of integers, having all 2 X 2 subblocks summing to 4. - R. H. Hardin, Apr 03 2009
Number of moves required in 4-peg Tower of Hanoi solution using a (suboptimal) recursive algorithm: Move (n-2) disks, move bottom 2 disks, move (n-2) disks. Cf. A007664. - Toby Gottfried, Nov 29 2010

Crossrefs

Same recurrence as in A135530.
Partial sums of A163403.
A060482 without the term 2.
Cf. A007664 (Optimal 4-peg Tower of Hanoi).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Maple
    a:=proc(n) options operator,arrow: 2^((1/2)*n-1)*(4+4*(-1)^n+3*sqrt(2)*(1-(-1)^n))-3 end proc: seq(a(n),n=0..40); # Emeric Deutsch, Mar 31 2008
  • Mathematica
    LinearRecurrence[{1, 2, -2}, {1, 3, 5}, 100] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    x='x+O('x^50); Vec((1+2*x)/((1-x)*(1-2*x^2))) \\ G. C. Greubel, Feb 18 2017

Formula

a(n) = 2^((1/2)*n-1)*(4 + 4(-1)^n + 3*sqrt(2)*(1-(-1)^n)) - 3. - Emeric Deutsch, Mar 31 2008
G.f.: (1+2*x)/((1-x)*(1-2*x^2)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = 2*a(n-2) + 3; first differences are powers of 2, occurring in pairs. - Toby Gottfried, Nov 29 2010
a(n) = A027383(n+1) - 1. - Jason Kimberley, Nov 01 2011
a(2n+1) = (a(2n) + a(2n+2))/2. - Richard R. Forberg, Nov 30 2013
E.g.f.: 4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x) - 3*cosh(x) - 3*sinh(x). - Stefano Spezia, May 13 2023

Extensions

Edited by N. J. A. Sloane, Apr 18 2008
More terms from Emeric Deutsch, Mar 31 2008