cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136325 a(n) = 8*a(n-1)-a(n-2) with a(0)=0 and a(1)=3.

Original entry on oeis.org

0, 3, 24, 189, 1488, 11715, 92232, 726141, 5716896, 45009027, 354355320, 2789833533, 21964312944, 172924670019, 1361433047208, 10718539707645, 84386884613952, 664376537203971, 5230625413017816, 41180626766938557
Offset: 0

Views

Author

Lorenz H. Menke, Jr., Mar 26 2008

Keywords

Comments

Nonnegative integers k such that 15*k^2 + 9 is a square.
From the recurrence we have a(n) = sqrt(15)*((4 + sqrt(15))^n - (4 - sqrt(15))^n)/10.

Examples

			G.f. = 3*x + 24*x^2 + 189*x^3 + 1488*x^4 + 11715*x^5 + 92232*x^6 + 726141*x^7 + ...
		

Crossrefs

Cf. A001090.

Programs

  • Mathematica
    Do[If[IntegerQ[Sqrt[3 (3 + 5 x^2)]], Print[{x, Sqrt[3 (3 + 5 x^2)]}]], {x, 0, 2000000}]
    LinearRecurrence[{8,-1},{0,3},30] (* Harvey P. Dale, Aug 18 2014 *)
    a[ n_] := 3 ChebyshevU[ n - 1, 4]; (* Michael Somos, Oct 14 2015 *)
    a[ n_] := 3/2 ((4 + Sqrt[15])^n - (4 - Sqrt[15])^n) / Sqrt[15] // Simplify; (* Michael Somos, Oct 14 2015 *)
  • PARI
    {a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 5}; /* Michael Somos, Apr 05 2008 */
    
  • PARI
    {a(n) = 3 * polchebyshev(n-1, 2, 4)}; /* Michael Somos, Oct 14 2015 */
    
  • PARI
    {a(n) = 3 * imag( (4 + quadgen(60))^n )}; /* Michael Somos, Oct 14 2015 */

Formula

From Colin Barker, Jan 24 2013: (Start)
a(n) = (sqrt(3/5)*(-(4-sqrt(15))^n + (4+sqrt(15))^n))/2.
G.f.: 3*x/(x^2-8*x+1). (End)
a(n) = 3 * A001090(n).
For n > 0, a(n) is the denominator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the numerators see A070997. - Greg Dresden, Sep 12 2019

Extensions

Definition corrected by Bruno Berselli, Jan 24 2013
Definition, comments, formulas further corrected by Greg Dresden, Sep 13 2019
Exchanged definition and comment, in order to retain offset 0. - N. J. A. Sloane, Sep 23 2019