A136325 a(n) = 8*a(n-1)-a(n-2) with a(0)=0 and a(1)=3.
0, 3, 24, 189, 1488, 11715, 92232, 726141, 5716896, 45009027, 354355320, 2789833533, 21964312944, 172924670019, 1361433047208, 10718539707645, 84386884613952, 664376537203971, 5230625413017816, 41180626766938557
Offset: 0
Examples
G.f. = 3*x + 24*x^2 + 189*x^3 + 1488*x^4 + 11715*x^5 + 92232*x^6 + 726141*x^7 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-1).
Crossrefs
Cf. A001090.
Programs
-
Mathematica
Do[If[IntegerQ[Sqrt[3 (3 + 5 x^2)]], Print[{x, Sqrt[3 (3 + 5 x^2)]}]], {x, 0, 2000000}] LinearRecurrence[{8,-1},{0,3},30] (* Harvey P. Dale, Aug 18 2014 *) a[ n_] := 3 ChebyshevU[ n - 1, 4]; (* Michael Somos, Oct 14 2015 *) a[ n_] := 3/2 ((4 + Sqrt[15])^n - (4 - Sqrt[15])^n) / Sqrt[15] // Simplify; (* Michael Somos, Oct 14 2015 *)
-
PARI
{a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 5}; /* Michael Somos, Apr 05 2008 */
-
PARI
{a(n) = 3 * polchebyshev(n-1, 2, 4)}; /* Michael Somos, Oct 14 2015 */
-
PARI
{a(n) = 3 * imag( (4 + quadgen(60))^n )}; /* Michael Somos, Oct 14 2015 */
Formula
From Colin Barker, Jan 24 2013: (Start)
a(n) = (sqrt(3/5)*(-(4-sqrt(15))^n + (4+sqrt(15))^n))/2.
G.f.: 3*x/(x^2-8*x+1). (End)
a(n) = 3 * A001090(n).
For n > 0, a(n) is the denominator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the numerators see A070997. - Greg Dresden, Sep 12 2019
Extensions
Definition corrected by Bruno Berselli, Jan 24 2013
Definition, comments, formulas further corrected by Greg Dresden, Sep 13 2019
Exchanged definition and comment, in order to retain offset 0. - N. J. A. Sloane, Sep 23 2019
Comments