cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140966 a(n) = (5 + (-2)^n)/3.

Original entry on oeis.org

2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881, 1431655767, -2863311529, 5726623063
Offset: 0

Views

Author

Paul Curtz, Jul 27 2008

Keywords

Comments

Inverse binomial transform of A048573.
This is an example of the case k=-1 of sequences with recurrences a(n) = k*a(n-1) + (k+3)*a(n-2) - (2*k+2)*a(n-3).
The case k=1 is covered, for example, by A097163, A135520, A136326, A136336, or A137208.
Sequences with k=2 are A094554 and A094555.
Sequences with k=3 are A084175, A108924, and A139818.

Crossrefs

Programs

Formula

a(n) = -a(n-1) + 2*a(n-2).
G.f.: (2+3*x)/((1-x)*(1+2*x)).
a(n+1) - a(n) = (-1)^(n+1)*A000079(n).
a(n+3) = (-1)^n*A083582(n).
a(n+1) - 2*a(n) = -a(n+2).
a(n+1) - 3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1).
a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014
E.g.f.: (5*exp(x) + exp(-2*x))/3. - Stefano Spezia, Jul 27 2024

Extensions

Definition simplified by R. J. Mathar, Sep 11 2009

A330246 a(n) = 4^(n+1) + (4^n-1)/3.

Original entry on oeis.org

4, 17, 69, 277, 1109, 4437, 17749, 70997, 283989, 1135957, 4543829, 18175317, 72701269, 290805077, 1163220309, 4652881237, 18611524949, 74446099797, 297784399189, 1191137596757, 4764550387029, 19058201548117, 76232806192469, 304931224769877, 1219724899079509
Offset: 0

Views

Author

Vincenzo Librandi, Jan 09 2020

Keywords

Comments

After 4, these numbers are the third column of the rectangular array in A238475.

Crossrefs

Similar to A272743.
Together with 1: first bisection of A136326.

Programs

  • Magma
    [4^(n+1)+(4^n-1)/3: n in [0..30]];
  • Mathematica
    Table[(4^(n + 1) + (4^n - 1) / 3), {n, 0, 30}]

Formula

G.f.: (4 - 3*x) / ((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n) = 4*a(n-1) + 1 for n > 0.
a(n) = (13*4^n -1)/3, for n >= 0. - Wolfdieter Lang, Sep 16 2021
a(n) = A178415(5, n) = A347834(7, n-1), arrays, for n >= 1. - Wolfdieter Lang, Nov 29 2021
Showing 1-2 of 2 results.