cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162557 a(n) = ((3+sqrt(3))*(4+sqrt(3))^n+(3-sqrt(3))*(4-sqrt(3))^n)/6.

Original entry on oeis.org

1, 5, 27, 151, 857, 4893, 28003, 160415, 919281, 5268853, 30200171, 173106279, 992248009, 5687602445, 32601595443, 186873931759, 1071170713313, 6140004593637, 35194817476027, 201738480090935, 1156375213539129, 6628401467130877, 37994333961038339, 217785452615605311
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009

Keywords

Comments

Binomial transform of A086405.
Inverse binomial transform of A162558.
4th binomial transform of A108411.
2nd binomial transform of A079935. [R. J. Mathar, Jul 17 2009]
From J. Conrad, Aug 29 2016: (Start)
Partial sum of A136777.
Backward difference of Sum_{k=0..n} A027907(n+1,2k+2)*3^k.
(End)
String length in substitution system {0 -> 1001001, 1 -> 11011} at step n from initial string "1" (1 -> 11011 -> 110111101110010011101111011 -> ...). - Ilya Gutkovskiy, Aug 30 2016

Crossrefs

Cf. A108411 (powers of 3 repeated), A086405, A162558.
Cf. A162558. [R. J. Mathar, Jul 17 2009]

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-3); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/6: n in [0..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 13 2009
    
  • Magma
    I:=[1,5]; [n le 2 select I[n]  else 8*Self(n-1)-13*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 30 2016
  • Maple
    seq(simplify(((3+sqrt(3))*(4+sqrt(3))^n+(3-sqrt(3))*(4-sqrt(3))^n)*1/6), n = 0..20); # Emeric Deutsch, Jul 14 2009
  • Mathematica
    Table[FullSimplify[((3 + #) (4 + #)^n + (3 - #) (4 - #)^n)/6 &@ Sqrt@ 3], {n, 0, 23}] (* Michael De Vlieger, Aug 30 2016 *)
    LinearRecurrence[{8,-13},{1,5},30] (* Harvey P. Dale, Oct 23 2020 *)

Formula

a(n) = 8*a(n-1)-13*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1-3*x)/(1-8*x+13*x^2).

Extensions

Edited, corrected and extended beyond a(5) by Klaus Brockhaus, Emeric Deutsch and R. J. Mathar, Jul 07 2009
More terms from Vincenzo Librandi, Aug 30 2016

A136778 Number of primitive multiplex juggling sequences of length n, base state <2,1> and hand capacity 2.

Original entry on oeis.org

1, 3, 15, 75, 381, 1947, 9975, 51159, 262497, 1347123, 6913911, 35485779, 182133885, 934823451, 4798101855, 24626900271, 126400914849, 648769995939, 3329901037119, 17091174551835, 87722802540957, 450249343708827, 2310966659437671, 11861354115061383
Offset: 1

Views

Author

Steve Butler, Jan 21 2008

Keywords

Crossrefs

Cf. A136777.

Programs

  • PARI
    Vec((x-4*x^2+3*x^3)/(1-7*x+9*x^2+3*x^3) + O(x^30)) \\ Colin Barker, Aug 31 2016

Formula

G.f.: (x-4*x^2+3*x^3)/(1-7*x+9*x^2+3*x^3).
a(n) = 7*a(n-1)-9*a(n-2)-3*a(n-3) for n>3. - Colin Barker, Aug 31 2016
Showing 1-2 of 2 results.