cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137246 a(n) is the ratio of the sum of the squares of the bends (curvatures) of the n-th generation of an Apollonian packing to the sum of the squares of the bends of the initial four-circle configuration.

Original entry on oeis.org

1, 17, 339, 6729, 133563, 2651073, 52620771, 1044462201, 20731381707, 411494247537, 8167690805619, 162119333369769, 3217883594978523, 63871313899461153, 1267772627204287491, 25163838602387366361, 499473454166134464747, 9913977567515527195857
Offset: 1

Views

Author

Colin Mallows, Mar 09 2008

Keywords

Comments

These ratios are independent of the starting configuration. Similar ratios of third and higher moments are not so independent.
See A189226 for additional comments, references and links.

Examples

			Starting with the configuration with bends (-1,2,2,3) with sum(bends^2) = 18, the next generation contains four circles with bends 3,6,6,15. The sum of their squares is 306 = 18*a(2). The third generation has 12 circles with sum(bends^2) = 6102 = 18*a(3).
		

Crossrefs

Programs

  • GAP
    a:=[1,17,339];; for n in [4..30] do a[n]:=20*a[n-1]-3*a[n-2]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!(x*(1-x)*(1-2*x)/(1-20*x+3*x^2)));  // Bruno Berselli, Jul 04 2011
    
  • Mathematica
    CoefficientList[Series[(2z^2-3z+1)/(3z^2-20z+1), {z, 0, 30}], z] (* and *) LinearRecurrence[{20, -3}, {1, 17, 339}, 30] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
  • PARI
    Vec(x*(1-2*x)*(1-x)/(1-20*x+3*x^2)+O(x^30)) \\ Charles R Greathouse IV, Jul 03 2011
    
  • Sage
    a=(x*(1-x)*(1-2*x)/(1-20*x+3*x^2)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 24 2019
    

Formula

For n >= 4, a(n) = 20*a(n-1) - 3*a(n-2).
O.g.f.: x*(1-x)*(1-2*x)/(1-20*x+3*x^2). - R. J. Mathar, Mar 31 2008
a(n) = ((41+sqrt(97))*(10+sqrt(97))^(n-1) - (41-sqrt(97))*(10-sqrt(97))^(n-1))/(6*sqrt(97)) for n>1. - Bruno Berselli, Jul 04 2011