cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A076982 Number of triangular numbers that divide the n-th triangular number.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 2, 4, 4, 2, 4, 4, 2, 5, 6, 2, 3, 3, 3, 8, 4, 2, 4, 6, 2, 3, 5, 2, 4, 4, 2, 5, 3, 2, 10, 4, 2, 3, 7, 3, 4, 4, 2, 9, 5, 2, 4, 6, 2, 4, 5, 2, 3, 6, 5, 6, 3, 2, 6, 6, 2, 4, 7, 3, 5, 3, 2, 4, 6, 2, 5, 5, 2, 4, 7, 2, 6, 3, 3, 9, 3, 2, 5, 10, 2, 3, 5, 2, 5, 8, 3, 4, 3, 2, 8, 4, 2, 5, 10, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

Also number of oblong numbers that divide the n-th oblong number.
Sequence A137281 contains the indices of primitive triangular numbers; those that have no triangular divisors other than 1 and itself. - T. D. Noe, Apr 12 2011

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 1 to 200 do s := 0:for j from 1 to i do if((i*(i+1)/2 mod j*(j+1)/2)=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=1..200);
  • Mathematica
    nn = 100; tri = Table[n*(n+1)/2, {n, nn}]; Table[Count[Mod[tri[[n]], Take[tri, n]], 0], {n, nn}] (* T. D. Noe, Apr 12 2011 *)
  • PARI
    a(n) = sumdiv(n*(n+1)/2, d, ispolygonal(d, 3)); \\ Michel Marcus, Mar 21 2023
  • Python
    def aupton(nn):
        tri = [i*(i+1)//2 for i in range(1, nn+1)]
        return [sum(t%t2 == 0 for t2 in tri[:j+1]) for j, t in enumerate(tri)]
    print(aupton(102)) # Michael S. Branicky, Dec 10 2021
    

Formula

a(n) = A007862(A000217(n)) = A129308(A002378(n)). - Ray Chandler, Jun 21 2008

Extensions

More terms from Lior Manor, Nov 06 2002
More terms from Sascha Kurz, Jan 26 2003

A188621 Smallest number k>1 such that k*(n-th triangular number) is also a triangular number.

Original entry on oeis.org

3, 2, 6, 12, 3, 5, 42, 56, 14, 18, 8, 10, 33, 2, 27, 240, 60, 68, 15, 3, 13, 105, 61, 67, 138, 150, 47, 51, 24, 26, 930, 117, 21, 6, 40, 66, 315, 41, 7, 231, 35, 37, 118, 5, 83, 495, 220, 230, 564, 55, 28, 147, 663, 98, 10, 50, 92, 798, 221, 229, 885, 12, 741, 615
Offset: 1

Views

Author

Zak Seidov, Apr 06 2011

Keywords

Comments

There is a sequence of triangular numbers >3 which are not divisible by any smaller triangular number > 1, primitive triangular numbers in that sense: 3, 10, 28, 55, 91, 136, 253.... whose indices are in A137281.
(This is apparently a subsequence of A060544. - R. J. Mathar, Apr 06 2011)

Examples

			a(1)=3 because A000217(1)=1, 3*1 is triangular and k*1 for 1<k<3 is not triangular.
a(2)=2 because A000217(2)=3, 2*3 is triangular and k*3 for 1<k<2 (empty condition) is not triangular.
a(3)=6 because A000217(3)=6, 6*6 is triangular and k*6 for 1<k<6 is not triangular.
a(1000)=153 because A000217(1000)=500500, 153*500500=76576500 is triangular and k*500500 for 1<k<153 is not triangular.
		

Crossrefs

Programs

  • Mathematica
    TriangularQ[n_] := IntegerQ[Sqrt[1 + 8 n]]; Table[t = (n + 1)*n/2; k = 2; While[! TriangularQ[k*t], k++]; k, {n, 100}] (* T. D. Noe, Apr 06 2011 *)
    snk[n_]:=Module[{k=2},While[!OddQ[Sqrt[8k*n+1]],k++];k]; snk/@Accumulate[ Range[ 70]] (* Harvey P. Dale, Apr 29 2018 *)

Formula

a(n) = A068084(n)/A000217(n).

A226863 Triangular numbers not divisible by lesser triangular numbers > 1.

Original entry on oeis.org

3, 10, 28, 55, 91, 136, 253, 325, 406, 496, 595, 703, 946, 1081, 1225, 1378, 1711, 1891, 2278, 2485, 2701, 2926, 3403, 3655, 3916, 4465, 4753, 5356, 5671, 7021, 7381, 8128, 8515, 8911, 9316, 10153, 10585, 11026, 11476, 12403, 13366, 13861, 14365, 14878, 15931
Offset: 1

Views

Author

Zak Seidov, Jun 20 2013

Keywords

Comments

We may coin them "prime triangulars". Certainly there are an infinity of them.

Crossrefs

Cf. A000217, A137281 (the indices of these triangular numbers).

Programs

  • Mathematica
    nn = 200; tri = Table[n (n + 1)/2, {n, nn}]; t = {}; Do[i = 2; While[i < n && Mod[tri[[n]], tri[[i]]] > 0, i++]; If[i == n, AppendTo[t, tri[[n]]]], {n, nn}]; t (* T. D. Noe, Jun 20 2013 *)
  • PARI
    is(n)=fordiv(n, d, if(ispolygonal(d,3) && d>1 && d1 \\ Charles R Greathouse IV, Jul 29 2016

Formula

a(10000) = 1085943106 = A000217(46603).

A225399 Number of nontrivial triangular numbers dividing triangular(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 2, 2, 0, 2, 2, 0, 3, 4, 0, 1, 1, 1, 6, 2, 0, 2, 4, 0, 1, 3, 0, 2, 2, 0, 3, 1, 0, 8, 2, 0, 1, 5, 1, 2, 2, 0, 7, 3, 0, 2, 4, 0, 2, 3, 0, 1, 4, 3, 4, 1, 0, 4, 4, 0, 2, 5, 1, 3, 1, 0, 2, 4, 0, 3, 3, 0, 2, 5, 0, 4, 1, 1, 7, 1, 0, 3, 8, 0, 1
Offset: 0

Views

Author

Alex Ratushnyak, May 06 2013

Keywords

Comments

Number of triangular numbers t such that t divides triangular(n), and 1 < t < triangular(n).

Examples

			triangular(3) = 6 is divisible by triangular(2) = 3, so a(3) = 1.
triangular(8) = 36 is divisible by triangular(2) = 3 and triangular(3) = 6, so a(8) = 2.
		

Crossrefs

Programs

  • C
    #include 
    int main() {
      unsigned long long c, i, j, t, tn;
      for (i = tn = 0; i < (1ULL<<32); i++) {
            for (c=0, tn += i, t = j = 3; t*2 <= tn; t+=j, ++j)
                    if (tn % t == 0)  ++c;
            printf("%llu, ", c);
      }
      return 0;
    }
  • Maple
    A225399 := proc(n)
        option remember ;
        local a,tn,i;
        a := 0 ;
        tn := A000217(n) ;
        for i from 2 to n-1 do
            if modp(tn,A000217(i))=0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A225399(n),n=0..80) ; # R. J. Mathar, Jan 12 2024
  • Mathematica
    tri = Table[n (n + 1)/2, {n, 100}]; Table[cnt = 0; Do[If[Mod[tri[[n]], tri[[k]]] == 0, cnt++], {k, 2, n - 1}]; cnt, {n, 0, Length[tri]}] (* T. D. Noe, May 07 2013 *)

Formula

a(n) = A076982(n) - 2 for n > 1.
Showing 1-4 of 4 results.