cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137635 a(n) = Sum_{k=0..n} C(2k,k)*C(2k,n-k); equals row 0 of square array A137634.

Original entry on oeis.org

1, 2, 10, 46, 226, 1136, 5810, 30080, 157162, 826992, 4376408, 23267332, 124179570, 664919780, 3570265000, 19216805476, 103652442922, 560127574340, 3031887311256, 16435458039076, 89213101943000, 484839755040768, 2637805800869740, 14365506336197816
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2008

Keywords

Comments

Diagonal of rational function 1/(1 - (x + y + x^2*y + x*y^2)). - Gheorghe Coserea, Aug 31 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 4*x*(1 + x)^2],{x,0,50}],x] (* Stefano Spezia, Sep 01 2018 *)
    Table[Sum[Binomial[2k,k]Binomial[2k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Dec 31 2018 *)
    a[n_]:=Binomial[2n, n]HypergeometricPFQ[{(1-2*n)/3, 2(1-n)/3, -2n/3}, {1/2-n, 1/2-n}, -3^3/2^4]; Array[a,24,0] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    a(n)=sum(k=0,n,binomial(2*k,k)*binomial(2*k,n-k));
    
  • PARI
    a(n)=polcoeff(1/sqrt(1-4*x*(1+x +x*O(x^n))^2),n,x);  /* Using the g.f.: */

Formula

G.f.: A(x) = 1/sqrt(1 - 4x(1+x)^2).
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +8*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
a(n) = binomial(2*n, n)*hypergeom([(1-2*n)/3, 2*(1-n)/3, -2*n/3], [1/2-n, 1/2-n], -3^3/2^4). - Stefano Spezia, Jul 11 2024