cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124353 Number of (directed) Hamiltonian circuits on the n-antiprism graph.

Original entry on oeis.org

6, 18, 32, 58, 112, 220, 450, 938, 1982, 4220, 9022, 19332, 41472, 89022, 191150, 410506, 881656, 1893634, 4067256, 8735972, 18763898, 40302866, 86566390, 185935764, 399371142, 857808780, 1842486536, 3957474934, 8500256470, 18257692546, 39215680080, 84231321290, 180920373632, 388598695916
Offset: 1

Views

Author

Eric W. Weisstein, Oct 27 2006

Keywords

Comments

The antiprism graph is defined for n>=3; extended to n=1 using the closed form.

Crossrefs

Cf. A124352.

Programs

  • Magma
    I:=[6,18,32,58,112]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) - 2*Self(n-3) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    Table[2 (2 n + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &]), {n, 20}]
    LinearRecurrence[{3, -1, -2, 0, 1}, {6, 18, 32, 58, 112}, 50] (* Vincenzo Librandi, Feb 04 2016 *)
    Join[{6, 18}, Rest[Rest[Rest[CoefficientList[Series[-18*x^2 - 6*x - 6 + (4*x^2 + 4*x - 6)/(x^3 + 2*x^2 + x - 1) + 4/(x - 1)^2 + 4/(x - 1), {x, 0, 50}], x]]]]] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); concat([6,18], Vec(-18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1))) \\ G. C. Greubel, Apr 27 2017

Formula

a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-5).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - a(n-4) - 12.
O.g.f.: -18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1) . - R. J. Mathar, Feb 10 2008
a(n) = 2*(n + 3*A000930(2*n) - 2*A000930(2*n-1)) = A137725(2*n) = 2*A137726(2*n).

Extensions

Formulas and further terms from Max Alekseyev, Feb 08 2008
Typo in formula corrected by Max Alekseyev, Nov 03 2010

A137726 Number of sequences of length n with elements {-2,-1,+1,+2}, counted up to simultaneous reversal and negation, such that the sum of elements of the whole sequence but of no proper subsequence equals 0 modulo n. For n>=4, the number of Hamiltonian (undirected) cycles on the circulant graph C_n(1,2).

Original entry on oeis.org

2, 2, 8, 9, 12, 16, 23, 29, 41, 56, 79, 110, 158, 225, 325, 469, 682, 991, 1446, 2110, 3085, 4511, 6603, 9666, 14157, 20736, 30380, 44511, 65223, 95575, 140060, 205253, 300800, 440828, 646051, 946817, 1387613, 2033628, 2980411, 4367986, 6401578, 9381949, 13749897, 20151433, 29533342
Offset: 1

Views

Author

Max Alekseyev, Feb 08 2008

Keywords

Comments

For n>1, the number of circular permutations (counted up to rotations and reversals) of {0, 1,...,n-1} such that the distance between every two adjacent elements is -2,-1,1,or 2 modulo n.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^7 + 2*x^5 - 4*x^4 - 5*x^3 + 4*x^2 - 2*x + 2)/((x - 1)^2*(x + 1)*(x^3 + x - 1)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); Vec(-x*(x^7 + 2*x^5 - 4*x^4 - 5*x^3 + 4*x^2 - 2*x + 2)/((x - 1)^2*(x + 1)*(x^3 + x - 1))) \\ G. C. Greubel, Apr 27 2017

Formula

For even n>=4, a(n) = n + 3*A000930(n) - 2*A000930(n-1); for odd n>=3, a(n) = n + 1 + 3*A000930(n) - 2*A000930(n-1).
For n>8, a(n) = 2*a(n-1) - a(n-3) - a(n-5) + a(n-6) or a(n) = a(n-1) + a(n-2) - a(n-5) - 2.
a(n) = A137725(n) / 2.
G.f.: -x*(x^7+2*x^5-4*x^4-5*x^3+4*x^2-2*x+2)/((x-1)^2*(x+1)*(x^3+x-1)). - Colin Barker, Aug 22 2012

Extensions

Formulae corrected by Max Alekseyev, Nov 03 2010
Showing 1-2 of 2 results.