cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A124352 Number of directed Hamiltonian paths on the n-antiprism graph.

Original entry on oeis.org

240, 816, 2400, 6480, 16660, 41440, 100836, 241520, 571692, 1340832, 3121456, 7222040, 16622220, 38085312, 86918688, 197677368, 448182640, 1013320480, 2285339532, 5142429512, 11547488652, 25881229248, 57906534100, 129352490384, 288522099360, 642668803056, 1429687270740, 3176714397960
Offset: 3

Views

Author

Eric W. Weisstein, Oct 27 2006

Keywords

Crossrefs

Cf. A124353 (numbers of directed Hamiltonian cycles).

Formula

Conjectures from Colin Barker, Dec 21 2015: (Start)
a(n) = 5*a(n-1)-6*a(n-2)-4*a(n-3)+7*a(n-4)+5*a(n-5)-5*a(n-6)-3*a(n-7)+a(n-8)+a(n-9) for n>11.
G.f.: 4*x^3*(60-96*x-60*x^2+84*x^3+61*x^4-73*x^5-41*x^6+15*x^7+14*x^8) / ((1-x)^3*(1-x-2*x^2-x^3)^2).
(End)
Equivalent conjecture: a(n) = 2*a(n-1) +3*a(n-2) -2*a(n-3) -6*a(n-4) -4*a(n-5) -a(n-6) +672*n -1376 -72*n^2 if n>=9. - R. J. Mathar, Jan 25 2016

Extensions

a(6)-a(10) from Eric W. Weisstein, Apr 03 2008
a(11)-a(18) from Eric W. Weisstein, Dec 16 2013
a(19)-a(30) from Andrew Howroyd, Dec 20 2015

A137726 Number of sequences of length n with elements {-2,-1,+1,+2}, counted up to simultaneous reversal and negation, such that the sum of elements of the whole sequence but of no proper subsequence equals 0 modulo n. For n>=4, the number of Hamiltonian (undirected) cycles on the circulant graph C_n(1,2).

Original entry on oeis.org

2, 2, 8, 9, 12, 16, 23, 29, 41, 56, 79, 110, 158, 225, 325, 469, 682, 991, 1446, 2110, 3085, 4511, 6603, 9666, 14157, 20736, 30380, 44511, 65223, 95575, 140060, 205253, 300800, 440828, 646051, 946817, 1387613, 2033628, 2980411, 4367986, 6401578, 9381949, 13749897, 20151433, 29533342
Offset: 1

Views

Author

Max Alekseyev, Feb 08 2008

Keywords

Comments

For n>1, the number of circular permutations (counted up to rotations and reversals) of {0, 1,...,n-1} such that the distance between every two adjacent elements is -2,-1,1,or 2 modulo n.

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^7 + 2*x^5 - 4*x^4 - 5*x^3 + 4*x^2 - 2*x + 2)/((x - 1)^2*(x + 1)*(x^3 + x - 1)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); Vec(-x*(x^7 + 2*x^5 - 4*x^4 - 5*x^3 + 4*x^2 - 2*x + 2)/((x - 1)^2*(x + 1)*(x^3 + x - 1))) \\ G. C. Greubel, Apr 27 2017

Formula

For even n>=4, a(n) = n + 3*A000930(n) - 2*A000930(n-1); for odd n>=3, a(n) = n + 1 + 3*A000930(n) - 2*A000930(n-1).
For n>8, a(n) = 2*a(n-1) - a(n-3) - a(n-5) + a(n-6) or a(n) = a(n-1) + a(n-2) - a(n-5) - 2.
a(n) = A137725(n) / 2.
G.f.: -x*(x^7+2*x^5-4*x^4-5*x^3+4*x^2-2*x+2)/((x-1)^2*(x+1)*(x^3+x-1)). - Colin Barker, Aug 22 2012

Extensions

Formulae corrected by Max Alekseyev, Nov 03 2010

A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism.

Original entry on oeis.org

426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism).

Programs

  • Mathematica
    A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *)

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)).
a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6.
(End)
a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020

A137725 Number of sequences of length n with elements {-2,-1,+1,+2}, such that the sum of elements of the whole sequence but of no proper subsequence equals 0 modulo n. For n>=4, the number of Hamiltonian (directed) circuits on the circulant graph C_n(1,2).

Original entry on oeis.org

4, 4, 16, 18, 24, 32, 46, 58, 82, 112, 158, 220, 316, 450, 650, 938, 1364, 1982, 2892, 4220, 6170, 9022, 13206, 19332, 28314, 41472, 60760, 89022, 130446, 191150, 280120, 410506, 601600, 881656, 1292102, 1893634, 2775226, 4067256, 5960822, 8735972, 12803156, 18763898, 27499794, 40302866, 59066684
Offset: 1

Views

Author

Max Alekseyev, Feb 08 2008

Keywords

Comments

Number of 1-D walks with jumps to next-nearest neighbors with n steps, starting at 0 and ending at -2n, -n, 0, n, or 2n, such that every point is visited at most once and every pair of points at the distance n contains at least one unvisited point (not counting the ending visit). Cf. A092765.
For n>1, the number of circular permutations (counted up to rotations) of {0, 1,...,n-1} such that the distance between every two adjacent elements is -2,-1,1,or 2 modulo n. Cf. A003274.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(-2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1)) \\ G. C. Greubel, Apr 28 2017

Formula

For even n>=4, a(n) = 2*(n + 3*A000930(n) - 2*A000930(n-1)); for odd n>=3, a(n) = 2*(n + 1 + 3*A000930(n) - 2*A000930(n-1)).
For n>8, a(n) = 2*a(n-1) - a(n-3) - a(n-5) + a(n-6) or a(n) = a(n-1) + a(n-2) - a(n-5) - 4.
O.g.f.: -2*x^2-2*x-6-1/(x+1)+2/(x-1)^2+1/(x-1)+(4*x-6)/(x^3+x-1). - R. J. Mathar, Feb 10 2008

Extensions

Typo in formulas corrected by Max Alekseyev, Nov 03 2010

A287988 Number of (undirected) paths in the n-antiprism graph.

Original entry on oeis.org

2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640, 31292844, 115494312, 423283562, 1542120664, 5589611460, 20170172896, 72499928322, 259692909048, 927342338956, 3302291258200, 11730149911914, 41572470711288, 147031327493572, 519029653663056
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Jun 05 2017

Crossrefs

Programs

  • Mathematica
    Table[n RootSum[-1 - # - 3 #^2 + #^3 &, 23 #^n + 32 #^(n + 1) + 5 #^(n + 2) &]/44 - 7 n - 3 n^2 - 2 n^3, {n, 20}]
    LinearRecurrence[{10, -37, 64, -58, 36, -26, 16, -5, 2, -1}, {2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640}, 20]
    CoefficientList[Series[(2 (2 x^6 + 4 x^5 + x^4 + 24 x^3 - 4 x^2 + 20 x + 1) (1 - 2 x - x^2))/((1 - x)^4 (1 - 3 x - x^2 - x^3)^2), {x, 0, 20}], x]
  • PARI
    Vec(2*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1)*(1-2*x-x^2)/((1-x)^4*(1-3*x-x^2-x^3)^2) + O(x^20)) \\ Andrew Howroyd, Jun 05 2017

Formula

From Andrew Howroyd, Jun 05 2017 (Start)
a(n) = 10*a(n-1)-37*a(n-2)+64*a(n-3) -58*a(n-4)+36*a(n-5)-26*a(n-6) +16*a(n-7)-5*a(n-8) +2*a(n-9)-a(n-10) for n>10.
G.f.: 2*x*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1) * (1-2*x-x^2) / ((1-x)^4 * (1-3*x-x^2-x^3)^2).
(End)

Extensions

a(1)-a(2) and a(14)-a(24) from Andrew Howroyd, Jun 05 2017

A306447 Number of (undirected) Hamiltonian cycles in the n-antiprism graph.

Original entry on oeis.org

3, 9, 16, 29, 56, 110, 225, 469, 991, 2110, 4511, 9666, 20736, 44511, 95575, 205253, 440828, 946817, 2033628, 4367986, 9381949, 20151433, 43283195, 92967882, 199685571, 428904390, 921243268, 1978737467, 4250128235, 9128846273, 19607840040, 42115660645
Offset: 1

Views

Author

Eric W. Weisstein, May 04 2019

Keywords

Comments

Extended to a(1)-a(2) using the formula/recurrence.

Programs

  • Mathematica
    LinearRecurrence[{3,-1,-2,0,1},{3,9,16,29,56},40] (* Harvey P. Dale, Aug 06 2020 *)
  • PARI
    Vec(x*(3 - 8*x^2 - 4*x^3 + 3*x^4) / ((1 - x)^2*(1 - x - 2*x^2 - x^3)) + O(x^35)) \\ Colin Barker, Jul 12 2020

Formula

a(n) = A124353(n)/2.
From Colin Barker, Jul 12 2020: (Start)
G.f.: x*(3 - 8*x^2 - 4*x^3 + 3*x^4) / ((1 - x)^2*(1 - x - 2*x^2 - x^3)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-5) for n>5.
(End)
Showing 1-6 of 6 results.