cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A124353 Number of (directed) Hamiltonian circuits on the n-antiprism graph.

Original entry on oeis.org

6, 18, 32, 58, 112, 220, 450, 938, 1982, 4220, 9022, 19332, 41472, 89022, 191150, 410506, 881656, 1893634, 4067256, 8735972, 18763898, 40302866, 86566390, 185935764, 399371142, 857808780, 1842486536, 3957474934, 8500256470, 18257692546, 39215680080, 84231321290, 180920373632, 388598695916
Offset: 1

Views

Author

Eric W. Weisstein, Oct 27 2006

Keywords

Comments

The antiprism graph is defined for n>=3; extended to n=1 using the closed form.

Crossrefs

Cf. A124352.

Programs

  • Magma
    I:=[6,18,32,58,112]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) - 2*Self(n-3) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    Table[2 (2 n + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &]), {n, 20}]
    LinearRecurrence[{3, -1, -2, 0, 1}, {6, 18, 32, 58, 112}, 50] (* Vincenzo Librandi, Feb 04 2016 *)
    Join[{6, 18}, Rest[Rest[Rest[CoefficientList[Series[-18*x^2 - 6*x - 6 + (4*x^2 + 4*x - 6)/(x^3 + 2*x^2 + x - 1) + 4/(x - 1)^2 + 4/(x - 1), {x, 0, 50}], x]]]]] (* G. C. Greubel, Apr 27 2017 *)
  • PARI
    x='x+O('x^50); concat([6,18], Vec(-18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1))) \\ G. C. Greubel, Apr 27 2017

Formula

a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-5).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - a(n-4) - 12.
O.g.f.: -18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1) . - R. J. Mathar, Feb 10 2008
a(n) = 2*(n + 3*A000930(2*n) - 2*A000930(2*n-1)) = A137725(2*n) = 2*A137726(2*n).

Extensions

Formulas and further terms from Max Alekseyev, Feb 08 2008
Typo in formula corrected by Max Alekseyev, Nov 03 2010

A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism.

Original entry on oeis.org

426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism).

Programs

  • Mathematica
    A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *)

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)).
a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6.
(End)
a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020

A287988 Number of (undirected) paths in the n-antiprism graph.

Original entry on oeis.org

2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640, 31292844, 115494312, 423283562, 1542120664, 5589611460, 20170172896, 72499928322, 259692909048, 927342338956, 3302291258200, 11730149911914, 41572470711288, 147031327493572, 519029653663056
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Jun 05 2017

Crossrefs

Programs

  • Mathematica
    Table[n RootSum[-1 - # - 3 #^2 + #^3 &, 23 #^n + 32 #^(n + 1) + 5 #^(n + 2) &]/44 - 7 n - 3 n^2 - 2 n^3, {n, 20}]
    LinearRecurrence[{10, -37, 64, -58, 36, -26, 16, -5, 2, -1}, {2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640}, 20]
    CoefficientList[Series[(2 (2 x^6 + 4 x^5 + x^4 + 24 x^3 - 4 x^2 + 20 x + 1) (1 - 2 x - x^2))/((1 - x)^4 (1 - 3 x - x^2 - x^3)^2), {x, 0, 20}], x]
  • PARI
    Vec(2*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1)*(1-2*x-x^2)/((1-x)^4*(1-3*x-x^2-x^3)^2) + O(x^20)) \\ Andrew Howroyd, Jun 05 2017

Formula

From Andrew Howroyd, Jun 05 2017 (Start)
a(n) = 10*a(n-1)-37*a(n-2)+64*a(n-3) -58*a(n-4)+36*a(n-5)-26*a(n-6) +16*a(n-7)-5*a(n-8) +2*a(n-9)-a(n-10) for n>10.
G.f.: 2*x*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1) * (1-2*x-x^2) / ((1-x)^4 * (1-3*x-x^2-x^3)^2).
(End)

Extensions

a(1)-a(2) and a(14)-a(24) from Andrew Howroyd, Jun 05 2017

A124354 Orders of the automorphisms groups of the n-antiprism graph.

Original entry on oeis.org

48, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236
Offset: 3

Views

Author

Eric W. Weisstein, Oct 27 2006

Keywords

Crossrefs

Cf. A124352.

Programs

  • Mathematica
    Join[{48},4Range[4,60]] (* Harvey P. Dale, Aug 10 2013 *)

Formula

a(3) = 48, otherwise a(n) = 4n.
From Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x^3*(36*x^2 - 80*x + 48)/(x - 1)^2. (End)

A307933 Number of (undirected) Hamiltonian paths in the n-antiprism graph.

Original entry on oeis.org

120, 408, 1200, 3240, 8330, 20720, 50418, 120760, 285846, 670416, 1560728, 3611020, 8311110, 19042656, 43459344, 98838684, 224091320, 506660240, 1142669766, 2571214756, 5773744326, 12940614624, 28953267050, 64676245192, 144261049680, 321334401528, 714843635370, 1588357198980
Offset: 3

Views

Author

Eric W. Weisstein, May 06 2019

Keywords

Crossrefs

Cf. A124352.

Formula

a(n) = A124352(n)/2.
Conjectures from Colin Barker, Mar 29 2020: (Start)
G.f.: 2*x^3*(60 - 96*x - 60*x^2 + 84*x^3 + 61*x^4 - 73*x^5 - 41*x^6 + 15*x^7 + 14*x^8) / ((1 - x)^3*(1 - x - 2*x^2 - x^3)^2).
a(n) = 5*a(n-1) - 6*a(n-2) - 4*a(n-3) + 7*a(n-4) + 5*a(n-5) - 5*a(n-6) - 3*a(n-7) + a(n-8) + a(n-9) for n>11.
(End)

Extensions

a(30) corrected by Georg Fischer, Jan 25 2020
Showing 1-5 of 5 results.