A137909
Least k such that k*(2^p-1)*(k*(2^p-1)+1)+1 is prime, where 2^p-1 runs through the Mersenne primes.
Original entry on oeis.org
1, 2, 2, 3, 17, 8, 3, 6, 96, 9, 224, 33, 260, 1044, 2397, 3, 1487, 657, 9602, 2133, 18438, 93, 17273, 32583, 66539, 9632, 1431, 100440, 150857
Offset: 1
1*(2^2-1)*(1*(2^2-1)+1)+1=13 prime, 2^2-1 first Mersenne prime, a(1)=1
2*(2^3-1)*(2*(2^3-1)+1)+1=211 prime, 2^3-1 second Mersenne prime, a(2)=2
A121370
Least number k such that (k*M(n))^2 + k*M(n) - 1 is prime with M(i)=i-th Mersenne prime.
Original entry on oeis.org
1, 3, 1, 7, 8, 19, 13, 4, 16, 3, 42, 24, 434, 84, 160, 579, 475, 529, 2450, 2644, 3928, 558, 13680, 7146, 1408, 3003, 2369, 55000, 83873
Offset: 1
M(4)=2^7-1=127
127^2+127-1=16255 composite
(2*127)^2+2*127-1=64769 composite
(3*127)^2+3*127-1=145541 composite
(4*127)^2+4*127-1=258571 composite
(5*127)^2+5*127-1=403859 composite
(6*127)^2+6*127-1=581405 composite
(7*127)^2+7*127-1=791209 prime so k(4)=7
1*(2^2-1)*(1*(2^2-1)+1)-1=11 prime, 2^2-1 first Mersenne prime, a(1)=1.
3*(2^3-1)*(3*(2^3-1)+1)-1=461 prime, 2^3-1 second Mersenne prime, a(2)=3.
n=6: Mp(6) = 131071 and 19*131071*(19*131071 + 1) - 1 = 6201840632149 which is prime, and for k=1..18 no prime appears. - _Wolfdieter Lang_, Oct 26 2014
-
lista() = {v = readvec("b000043.txt"); for (i=1, #v, mp = 2^v[i] - 1; k=1; while (!isprime(k*mp*(k*mp + 1) - 1), k++); print1(k, ", "););} \\ Michel Marcus, Oct 27 2014
A137906
Least k such that k*(2^p-1)*(k*(2^p-1)-1)-1 is prime, where 2^p-1 runs through the Mersenne primes.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 27, 14, 34, 6, 132, 97, 1, 500, 1816, 1292, 136, 2445, 15, 1934, 5472, 1584, 2734, 21022, 5870
Offset: 1
1*(2^2-1)*(1*(2^2-1)-1)-1=5 prime, 2^2-1 first Mersenne prime, a(1)=1;
1*(2^3-1)*(1*(2^3-1)-1)-1=41 prime, 2^3-1 second Mersenne prime, a(2)=1.
A137907
Least k such that k*(2^p-1)*(k*(2^p-1)-1)+1 is prime, where 2^p-1 runs through the Mersenne primes.
Original entry on oeis.org
1, 1, 9, 6, 9, 24, 4, 7, 28, 70, 73, 121, 511, 106, 343, 2169, 1423, 2146, 5736, 4444, 2484, 2310, 2679, 25623, 2481, 39213
Offset: 1
1*(2^2-1)*(1*(2^2-1)-1)+1=7 prime, 2^2-1 first Mersenne prime, a(1)=1;
1*(2^3-1)*(1*(2^3-1)-1)+1=43 prime, 2^3-1 second Mersenne prime, a(2)=1.
A249509
Smallest number k >= A000043(n) such that k*A000668(n)*(k*A000668(n)+1)-1 is prime.
Original entry on oeis.org
2, 3, 5, 7, 25, 19, 20, 42, 96, 190, 134, 164, 650, 852, 1455, 2765, 2480, 3960, 5464, 6694, 17206, 13118, 13680, 28481, 27445, 28821, 101696, 116232, 142083, 187376, 250118, 1200007
Offset: 1
Showing 1-5 of 5 results.
Comments