A137928 The even principal diagonal of a 2n X 2n square spiral.
2, 4, 10, 16, 26, 36, 50, 64, 82, 100, 122, 144, 170, 196, 226, 256, 290, 324, 362, 400, 442, 484, 530, 576, 626, 676, 730, 784, 842, 900, 962, 1024, 1090, 1156, 1226, 1296, 1370, 1444, 1522, 1600, 1682, 1764, 1850, 1936, 2026, 2116, 2210, 2304, 2402, 2500, 2602, 2704, 2810
Offset: 1
Examples
Example with n = 2: . 7---8---9--10 | | 6 1---2 11 | | | 5---4---3 12 | 16--15--14--13 . a(1) = 2(1) + 4*floor((1-1)/4) = 2; a(2) = 2(2) + 4*floor((2-1)/4) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Maple
A137928:=n->2*ceil(n^2/2): seq(A137928(n), n=1..100); # Wesley Ivan Hurt, Jul 25 2017
-
Mathematica
LinearRecurrence[{2,0,-2,1},{2,4,10,16},60] (* Harvey P. Dale, Aug 28 2017 *)
-
PARI
a(n)=2*n+(n-1)^2\4*4 \\ Charles R Greathouse IV, May 21 2015
-
Python
a = lambda n: 2*n + 4*floor((n-1)**2/4)
Formula
a(n) = 2*n + 4*floor((n-1)^2/4) = 2*n + 4*A002620(n-1).
From R. J. Mathar, Jun 27 2011: (Start)
G.f.: 2*x*(1 + x^2) / ( (1 + x)*(1 - x)^3 ).
a(n) = 2*A000982(n). (End)
a(n+1) = (3 + 4*n + 2*n^2 + (-1)^n)/2 = A080335(n) + (-1)^n. - Philippe Deléham, Feb 17 2012
a(n) = 2 * ceiling(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = n^2 + (n mod 2). - Bruno Berselli, Oct 03 2017
Sum_{n>=1} 1/a(n) = Pi*tanh(Pi/2)/4 + Pi^2/24. - Amiram Eldar, Jul 07 2022
Comments