cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137928 The even principal diagonal of a 2n X 2n square spiral.

Original entry on oeis.org

2, 4, 10, 16, 26, 36, 50, 64, 82, 100, 122, 144, 170, 196, 226, 256, 290, 324, 362, 400, 442, 484, 530, 576, 626, 676, 730, 784, 842, 900, 962, 1024, 1090, 1156, 1226, 1296, 1370, 1444, 1522, 1600, 1682, 1764, 1850, 1936, 2026, 2116, 2210, 2304, 2402, 2500, 2602, 2704, 2810
Offset: 1

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

This is concerned with 2n X 2n square spirals of the form illustrated in the Example section.

Examples

			Example with n = 2:
.
   7---8---9--10
   |           |
   6   1---2  11
   |       |   |
   5---4---3  12
               |
  16--15--14--13
.
a(1) = 2(1) + 4*floor((1-1)/4) = 2;
a(2) = 2(2) + 4*floor((2-1)/4) = 4.
		

Crossrefs

Cf. A000982, A002061 (odd diagonal), A002620, A080335, A171218.

Programs

Formula

a(n) = 2*n + 4*floor((n-1)^2/4) = 2*n + 4*A002620(n-1).
a(n) = A171218(n) - A171218(n-1). - Reinhard Zumkeller, Dec 05 2009
From R. J. Mathar, Jun 27 2011: (Start)
G.f.: 2*x*(1 + x^2) / ( (1 + x)*(1 - x)^3 ).
a(n) = 2*A000982(n). (End)
a(n+1) = (3 + 4*n + 2*n^2 + (-1)^n)/2 = A080335(n) + (-1)^n. - Philippe Deléham, Feb 17 2012
a(n) = 2 * ceiling(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = n^2 + (n mod 2). - Bruno Berselli, Oct 03 2017
Sum_{n>=1} 1/a(n) = Pi*tanh(Pi/2)/4 + Pi^2/24. - Amiram Eldar, Jul 07 2022