cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138233 a(n) = 2^(2*n+1) + 3^(2*n+1).

Original entry on oeis.org

5, 35, 275, 2315, 20195, 179195, 1602515, 14381675, 129271235, 1162785755, 10462450355, 94151567435, 847322163875, 7625731702715, 68630914235795, 617675543767595, 5559069156490115, 50031579458738075, 450284043329950835
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 07 2008

Keywords

Comments

Subsequence of A008587.

Crossrefs

Programs

  • Magma
    [2^(2*n+1) + 3^(2*n+1): n in [0..30]]; // G. C. Greubel, Mar 11 2023
    
  • Mathematica
    LinearRecurrence[{13, -36},{5, 35},19] (* Ray Chandler, Jul 14 2017 *)
    2^#+3^#&/@(2*Range[0,20]+1) (* Harvey P. Dale, Sep 25 2019 *)
  • SageMath
    [2^(2*n+1) + 3^(2*n+1) for n in range(31)] # G. C. Greubel, Mar 11 2023

Formula

a(n) = 5*A096951(n).
a(n+1) = 4*a(n) + 5*3^(2*n+1), a(0) = 5.
O.g.f.: 5*x*(7-36*x)/((1-4*x)*(1-9*x)). - R. J. Mathar, Apr 24 2008
E.g.f.: 2*exp(4*x) + 3*exp(9*x). - G. C. Greubel, Mar 11 2023

A138200 a(n) = (14^(2*n+1) + 3^(2*n+1)) / 17.

Original entry on oeis.org

1, 163, 31651, 6200923, 1215356851, 238209726283, 46689104402851, 9151064445421243, 1793608631144725651, 351547291702945685803, 68903269173764569541251, 13505040758057740566199963
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 05 2008

Keywords

Crossrefs

a(n) = A138199(n)/17.

Programs

  • Magma
    [(14^(2*n+1)+3^(2*n+1))/17: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
  • Mathematica
    Table[(14^(2n+1)+3^(2n+1))/17,{n,0,20}] (* or *) LinearRecurrence[ {205,-1764},{1,163},20] (* Harvey P. Dale, Jul 19 2013 *)

Formula

a(n+1) = 9*a(n) + 11*14^(2*n+1), a(0) = 1.
O.g.f.: (14/(1-196x) + 3/(1-9x))/17. - R. J. Mathar, Mar 07 2008
a(n) = 205*a(n-1) - 1764*a(n-2), with a(0)=1, a(1)=163. - Harvey P. Dale, Jul 19 2013
Showing 1-2 of 2 results.