A138290 Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.
6, 14, 22, 26, 30, 36, 38, 42, 54, 57, 62, 70, 78, 81, 90, 94, 110, 122, 126, 132, 134, 138, 142, 147, 150, 158, 166, 168, 171, 172, 174, 178, 182, 190, 194, 198, 206, 210, 222, 238, 254, 285, 294, 312, 315, 318, 334, 336, 350, 366, 372, 382, 405, 414, 416, 432
Offset: 1
Keywords
Examples
6 is here because 95, 111, 119, 123, 125 and 126 are all composite.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..996 (terms 1..275 from T. D. Noe)
Programs
-
Haskell
import Data.List (elemIndices) a138290 n = a138290_list !! (n-1) a138290_list = map (+ 1) $ tail $ elemIndices 0 a208083_list -- Reinhard Zumkeller, Feb 23 2012
-
Mathematica
t={}; Do[num=2^(n+1)-1; k=0; While[k
Harvey P. Dale, Apr 09 2022 *) -
PARI
isok(m) = my(nb=0); for (k=0, m-1, if (!ispseudoprime(2^(m+1) - 2^k - 1), nb++, break)); nb==m; \\ Michel Marcus, Sep 13 2021
-
Python
from sympy import isprime A138290_list = [] for n in range(1,10**3): k2, n2 = 1, 2**(n+1) for k in range(n): if isprime(n2-k2-1): break k2 *= 2 else: A138290_list.append(n) # Chai Wah Wu, Sep 07 2021
Formula
For n > 0, a(n) = A369375(n+1) - 1. - Thomas Ordowski, Mar 20 2024
Comments