cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138290 Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.

Original entry on oeis.org

6, 14, 22, 26, 30, 36, 38, 42, 54, 57, 62, 70, 78, 81, 90, 94, 110, 122, 126, 132, 134, 138, 142, 147, 150, 158, 166, 168, 171, 172, 174, 178, 182, 190, 194, 198, 206, 210, 222, 238, 254, 285, 294, 312, 315, 318, 334, 336, 350, 366, 372, 382, 405, 414, 416, 432
Offset: 1

Views

Author

T. D. Noe, Mar 13 2008

Keywords

Comments

The binary representation of 2^(m+1) - 2^k - 1 has m 1-bits and one 0-bit. Note that prime m are very rare: 577 is the first and 5569 is the second.
A208083(a(n)+1) = 0 (cf. A081118). - Reinhard Zumkeller, Feb 23 2012 [Corrected by Thomas Ordowski, Feb 19 2024]
Conjecture: 2^j - 2 are terms for j > 2. - Chai Wah Wu, Sep 07 2021
The proof of this conjecture is in A369375. - Thomas Ordowski, Mar 20 2024

Examples

			6 is here because 95, 111, 119, 123, 125 and 126 are all composite.
		

Crossrefs

Many common terms with A092112.

Programs

  • Haskell
    import Data.List (elemIndices)
    a138290 n = a138290_list !! (n-1)
    a138290_list = map (+ 1) $ tail $ elemIndices 0 a208083_list
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Mathematica
    t={}; Do[num=2^(n+1)-1; k=0; While[kHarvey P. Dale, Apr 09 2022 *)
  • PARI
    isok(m) = my(nb=0); for (k=0, m-1, if (!ispseudoprime(2^(m+1) - 2^k - 1), nb++, break)); nb==m; \\ Michel Marcus, Sep 13 2021
  • Python
    from sympy import isprime
    A138290_list = []
    for n in range(1,10**3):
        k2, n2 = 1, 2**(n+1)
        for k in range(n):
            if isprime(n2-k2-1):
                    break
            k2 *= 2
        else:
            A138290_list.append(n) # Chai Wah Wu, Sep 07 2021
    

Formula

For these m, A095058(m) = 0 and A110700(m) > 1.
For n > 0, a(n) = A369375(n+1) - 1. - Thomas Ordowski, Mar 20 2024