cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A177833 Numbers k such that k^2 - 13 and k^2 + 13 are primes.

Original entry on oeis.org

4, 12, 18, 72, 84, 114, 198, 354, 378, 588, 612, 618, 864, 912, 948, 1032, 1068, 1134, 1320, 1410, 1428, 1452, 1500, 1830, 1956, 2046, 2058, 2172, 2298, 2448, 2634, 2748, 2844, 2856, 3192, 3246, 3390, 3474, 3846, 3906, 4092, 4182, 4506, 4842, 4884, 4890
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 14 2010

Keywords

Examples

			4^2 - 13 = 3 = prime(2), 4^2 + 13 = 29 = prime(10).
12^2 - 13 = 131 = prime(32), 12^2 + 13 = 157 = prime(37).
948^2 - 13 = 898691 = prime(71194), 948^2 + 13 = prime(71195), first case that they are consecutive primes.
		

References

  • J. Matousek and J. Nesetril, Diskrete Mathematik: eine Entdeckungsreise, Springer-Lehrbuch, 2. Aufl., Berlin, 2007

Crossrefs

Programs

  • Magma
    [n: n in [4..1000]| IsPrime(n^2-13) and IsPrime(n^2+13)]; // Vincenzo Librandi, Nov 30 2010
  • Maple
    with(numtheory): A248785:=n->`if`(isprime(n^2-13) and isprime(n^2+13), n, NULL): seq(A248785(n), n=1..10^4); # Wesley Ivan Hurt, Oct 13 2014
  • Mathematica
    Select[Range[2,5000,2],AllTrue[#^2+{13,-13},PrimeQ]&] (* Harvey P. Dale, May 28 2024 *)

Extensions

More terms from Vincenzo Librandi, May 16 2010
Name edited by Michel Marcus, Nov 25 2024

A228244 Primes of the form k^2 + 17.

Original entry on oeis.org

17, 53, 593, 3617, 4373, 6101, 8117, 11681, 20753, 26261, 30293, 34613, 54773, 63521, 86453, 90017, 101141, 108917, 112913, 116981, 138401, 156833, 176417, 191861, 207953, 213461, 219041, 248021, 278801, 352853, 404513, 419921, 427733, 451601, 518417, 562517
Offset: 1

Views

Author

Michel Marcus, Aug 18 2013

Keywords

Examples

			17 = 0^2 + 17 is prime.
53 = 6^2 + 17 is prime.
		

Crossrefs

Programs

  • Magma
    [m: n in [0..900] | IsPrime(m) where m is n^2+17]; // Bruno Berselli, Aug 18 2013
  • Mathematica
    Select[Table[n^2 + 17, {n, 0, 900}], PrimeQ] (* Bruno Berselli, Aug 18 2013 *)
  • PARI
    isp(n) = isprime(n) && issquare(n-17);
    

Formula

a(n) = A241847(A264790(n)). - Elmo R. Oliveira, Apr 21 2025

A243449 Primes of the form n^2 + 14.

Original entry on oeis.org

23, 239, 743, 1103, 2039, 5639, 7583, 8663, 27239, 33503, 38039, 42863, 59063, 81239, 88223, 91823, 119039, 131783, 140639, 164039, 189239, 205223, 245039, 263183, 288383, 328343, 342239, 378239, 393143, 400703, 431663, 439583, 514103, 660983, 710663, 950639
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Crossrefs

Cf. A121250 (associated n).
Cf. primes of the form n^2+k: A144255 (k=1), A056899 (k=2), A049423 (k=3), A005473 (k=4), A056905 (k=5), A056909 (k=6), A079138 (k=7), A138338 (k=8), A138353 (k=9), A138355 (k=10), A138362 (k=11), A138368 (k=12), A138375 (k=13), this sequence (k=14), A243450 (k=15), A243451 (k=16), A228244 (k=17), A174812 (k=42).

Programs

  • Magma
    [a: n in [0..1000] | IsPrime(a) where a is n^2+14];
  • Mathematica
    Select[Table[n^2 + 14, {n, 0, 2000}], PrimeQ]
    Select[Range[1,1001,2]^2+14,PrimeQ] (* Harvey P. Dale, May 30 2023 *)

A176722 Primes of the form k^3 + 13, k >= 0.

Original entry on oeis.org

13, 229, 1013, 1741, 39317, 64013, 74101, 157477, 438989, 551381, 830597, 1906637, 2000389, 4096013, 7077901, 9261013, 10941061, 15625013, 16003021, 21024589, 24897101, 27000013, 69934541, 74088013, 79507013, 93576677, 122023949
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 25 2010

Keywords

Comments

Necessarily, k = 6 * j or k = 6 * j + 4.
Values of k corresponding to terms of the sequence: 0, 6, 10, 12, 34, 40, 42, 54, 76, 82, 94, 124, 126, 160, 192, 210, 222, 250, 252, 276, 292, 300, 412, 420, 430, 454, 496, 502, 570, 586, 612, 622, 640, 670, 684, 712, 720, 724, 726, 756, 784, 822, 826, 874, 882, 894, 934, 952, 964, 1006, 1056.

Examples

			0^3 + 13 = 13 = prime(6) = a(1);
6^3 + 13 = 229 = prime(50) = a(2);
300^3 + 13 = 27000013 = prime(1683067) = a(22).
		

References

  • H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag Berlin, 1973.

Crossrefs

Programs

  • Magma
    [a: n in [0..500]|IsPrime(a) where a is n^3+13] // Vincenzo Librandi, Dec 22 2010
  • Maple
    select(isprime,[seq(seq((6*j+m)^3+13,m=[0,4]),j=0..1000)]); # Robert Israel, Jun 28 2018
  • Mathematica
    Select[Range[0,1000]^3+13,PrimeQ]  (* Harvey P. Dale, Mar 12 2011 *)

A178504 Numbers n such that n^2 + 13 is an emirp.

Original entry on oeis.org

2, 10, 12, 18, 44, 60, 88, 108, 110, 114, 116, 122, 192, 198, 282, 380, 446, 574, 588, 604, 612, 618, 838, 840, 864, 970, 1032, 1068, 1104, 1148, 1186, 1228, 1258, 1314, 1368, 1384, 1390, 1412, 1754, 1888, 1894, 1930, 2658, 2660, 2728, 2784, 2804
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 29 2010

Keywords

Comments

A decimal emirp/mirp ("prime" / (German) "prim", spelled backwards) is defined as a prime number p whose reversal R(p) is also prime, but which is not a palindromic prime.

Examples

			2^2 + 13 = 17 = prime(7), 71 = prime(20), so 2 is in the sequence.
10^2 + 13 = 113 = prime(30), 311 = prime(64), so 10 is in the sequence.
28^2 + 13 = 797, which is a palindromic prime, so 28 is not in the sequence.
		

References

  • W. W. R. Ball, H. S. M. Coxeter: Mathematical Recreations and Essays, 13th edition, Dover Publications, 2010
  • H. Steinhaus: Kaleidoskop der Mathematik, VEB Dt. Verl. d. Wissenschaften, Berlin, 1959

Crossrefs

Subsequence of A113536.

Programs

  • Mathematica
    fQ[n_] := If[ PrimeQ[n^2 + 13], Block[{id = IntegerDigits[n^2 + 13]}, rid = Reverse@ id; PrimeQ@ FromDigits@ rid && rid != id]]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 26 2010 *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2010
Showing 1-5 of 5 results.