A265098
Integers n such that A138523(n) is 1 or a prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 28, 32
Offset: 1
a(4) = 4 because 1! + 3! + 5! + 7! = 5167 is prime.
-
Select[Range@ 1000, Or[# == 1, PrimeQ@ #] &@ Sum[(2 k - 1)!, {k, #}] &] (* Michael De Vlieger, Dec 01 2015 *)
-
lista(nn) = { print1(1, ", "); s = 0; for(k=1, nn, s += (2*k-1)!; if(ispseudoprime(s), print1(k, ", ")); ); }
A138524
a(n) = Sum_{k=1..n} (2*k)!.
Original entry on oeis.org
2, 26, 746, 41066, 3669866, 482671466, 87660962666, 21010450850666, 6423384156578666, 2439325392333218666, 1126440053169940898666, 621574841786409380258666, 403913035968392044964258666, 305292257647682252546468258666
Offset: 1
-
Table[Sum[(2*i)!, {i,n}], {n,15}] (* Stefan Steinerberger, Mar 25 2008 *)
Accumulate[(2*Range[20])!] (* Harvey P. Dale, Nov 12 2016 *)
-
for(n=1,25, print1(sum(k=1,n, (2*k)!), ", ")) \\ G. C. Greubel, Sep 29 2017
-
from math import factorial
def a(n): return sum(factorial(2*k) for k in range(1, n+1))
print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 26 2021
A138525
a(n) = Sum_{k=0..n} (2*k)!.
Original entry on oeis.org
1, 3, 27, 747, 41067, 3669867, 482671467, 87660962667, 21010450850667, 6423384156578667, 2439325392333218667, 1126440053169940898667, 621574841786409380258667, 403913035968392044964258667
Offset: 0
-
A138525:=n->add((2*k)!, k=0..n): seq(A138525(n), n=0..15); # Wesley Ivan Hurt, Dec 01 2015
-
Table[Sum[(2i)!, {i, 0, n}], {n, 0, 15}] (* Stefan Steinerberger, Mar 25 2008 *)
-
a(n) = sum(k=0, n, (2*k)!); \\ Altug Alkan, Dec 01 2015
Showing 1-3 of 3 results.
Comments