A138591 Sums of two or more consecutive nonnegative integers.
1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Examples
0+1=1, 1+2=3, 2+3=5, 1+2+3=6, 3+4=7, 4+5=9, 1+2+3+4=10, ...
References
- A. Wah and H. Picciotto, Algebra: Themes, Tools, Concepts, 1994, page 190.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Tom M. Apostol, Sums of Consecutive Positive Integers, The Mathematical Gazette, Vol. 87, No. 508, (March 2003).
- Ron Knott, An Introduction to Runsums
- NRICH, Polite numbers
- Melfried Olson, Sequentially so, Mathematics Magazine 52:5, pp. 297-298.
- Erzsébet Orosz, On odd-summing numbers, Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004), pp. 125-129.
- Henri Picciotto's Math Education Page, Staircases
- PlanetMath, Polite number
- Wai Yan Pong, Sums of consecutive integers, The College Mathematics Journal, 38 (2007), 119-123.
- J. M. Rodriguez Caballero, A Characterization of the Hypotenuses of Primitive Pythagorean Triangles Using Partitions into Consecutive Parts, Amer. Math. Monthly 126 (2019), 74-77.
- Wikipedia, Polite number
Crossrefs
Programs
-
Mathematica
1 + # + Floor[Log[2, # + 1 + Log[2, # + 1]]] &/@Range[0, 70] (* Ant King, Nov 18 2010 *)
-
PARI
a(n)=n+logint(n+logint(n,2),2) \\ Charles R Greathouse IV, Sep 01 2015
-
PARI
is(n)=n>>valuation(n,2)>1 || n==1 \\ Charles R Greathouse IV, Aug 01 2016
-
PARI
is_A138591(n)=hammingweight(n)>1||n==1 \\ M. F. Hasler, Jul 04 2025
-
Python
def A138591(n): return len(bin(n+len(bin(n))-3)) + n - 3 # Chai Wah Wu, Feb 18 2022
-
Python
A138591 = lambda n: n+(n+n.bit_length()-1).bit_length()-1 is_A138591 = lambda n: n.bit_count()>1 or n==1 # M. F. Hasler, Jul 04 2025 (C#) BigInteger a(BigInteger n) => (n + n.GetBitLength() - 1).GetBitLength() + n - 1; // Delbert L. Johnson, Mar 12 2023
Formula
Extensions
More terms from Carl R. White, Jul 22 2009
Comments