cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A138120 Concatenation of n digits 1, 2n-1 digits 0 and n digits 1.

Original entry on oeis.org

101, 1100011, 11100000111, 111100000001111, 1111100000000011111, 11111100000000000111111, 111111100000000000001111111, 1111111100000000000000011111111, 11111111100000000000000000111111111, 111111111100000000000000000001111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

a(n) has 4n-1 digits.
a(n) is also A147539(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ........... a(n)
1 ........... 101
2 ......... 1100011
3 ....... 11100000111
4 ..... 111100000001111
5 ... 1111100000000011111
		

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1$n,0$(2*n-1),1$n)):
    seq(a(n), n=1..11);  # Alois P. Heinz, Mar 03 2022
  • Mathematica
    Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},2n-1,0], PadRight[ {},n,1]]],{n,10}] (* or *) LinearRecurrence[{11011,-10121010,110110000,-100000000},{101,1100011,11100000111,111100000001111},10] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    Vec(x*(10001000*x^2-12100*x+101)/((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
    
  • Python
    def a(n): return int("1"*n + "0"*(2*n-1) + "1"*n)
    print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Mar 03 2022

Formula

G.f.: x*(10001000*x^2-12100*x+101) / ((x-1)*(10*x-1)*(1000*x-1)*(10000*x-1)). [Colin Barker, Sep 16 2013]

A138826 Concatenation of 2n-1 digits 1, n digits 0 and 2n-1 digits 1.

Original entry on oeis.org

101, 11100111, 1111100011111, 111111100001111111, 11111111100000111111111, 1111111111100000011111111111, 111111111111100000001111111111111, 11111111111111100000000111111111111111
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2008

Keywords

Comments

a(n) has 5n-2 digits.
a(n) is also A147540(n) written in base 2. [Omar E. Pol, Nov 08 2008]

Examples

			n ........... a(n)
1 ........... 101
2 ......... 11100111
3 ....... 1111100011111
4 ..... 111111100001111111
5 ... 11111111100000111111111
		

Crossrefs

Programs

  • Mathematica
    Table[(1000^n + 10)*(100^n - 10)/900, {n, 10}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    Vec(x*(1100000000*x^3-2000000*x^2+888910*x+101)/((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = (10^(2n-1)-1+10^(5n-2)-10^(3n-1))/9. [R. J. Mathar, Nov 07 2008, corrected Nov 09 2008]
G.f.: x*(1100000000*x^3-2000000*x^2+888910*x+101) / ((x-1)*(100*x-1)*(1000*x-1)*(100000*x-1)). - Colin Barker, Sep 16 2013

A138119 Concatenation of n digits 1 and 2*n-1 digits 0.

Original entry on oeis.org

10, 11000, 11100000, 11110000000, 11111000000000, 11111100000000000, 11111110000000000000, 11111111000000000000000, 11111111100000000000000000, 11111111110000000000000000000, 11111111111000000000000000000000, 11111111111100000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2008

Keywords

Comments

a(n) has 3*n-1 digits.
a(n) is also A147538(n) written in base 2. - Omar E. Pol, Nov 08 2008.

Examples

			n ...... a(n)
1 ....... 10
2 ...... 11000
3 ..... 11100000
4 .... 11110000000
5 ... 11111000000000
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1100, -100000}, {10, 11000}, 15] (* Paolo Xausa, Feb 06 2024 *)
  • PARI
    Vec(10*x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

From Colin Barker, Sep 16 2013: (Start)
a(n) = 1100*a(n-1) - 100000*a(n-2).
G.f.: 10*x / ((100*x-1)*(1000*x-1)). (End)

A138720 Concatenation of k digits 1, k digits 0 and k digits 1, where k is the n-th positive triangular number.

Original entry on oeis.org

101, 111000111, 111111000000111111, 111111111100000000001111111111, 111111111111111000000000000000111111111111111, 111111111111111111111000000000000000000000111111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Crossrefs

Cf. A000217, 138711, A138179, A138721, A138722.

Programs

  • Mathematica
    Table[c=(n(n+1))/2;FromDigits[Join[PadRight[{},c,1],PadRight[{},c,0], PadRight[{},c,1]]],{n,10}] (* Harvey P. Dale, Oct 15 2013 *)

A138719 Concatenation of k digits 1, k digits 0 and k digits 1, where k is the n-th positive Fibonacci number.

Original entry on oeis.org

101, 101, 110011, 111000111, 111110000011111, 111111110000000011111111, 111111111111100000000000001111111111111, 111111111111111111111000000000000000000000111111111111111111111
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Crossrefs

Showing 1-5 of 5 results.