A138996 First differences of Frobenius numbers for 5 successive numbers A138985.
1, 1, 1, 7, 2, 2, 2, 12, 3, 3, 3, 17, 4, 4, 4, 22, 5, 5, 5, 27, 6, 6, 6, 32, 7, 7, 7, 37, 8, 8, 8, 42, 9, 9, 9, 47, 10, 10, 10, 52, 11, 11, 11, 57, 12, 12, 12, 62, 13, 13, 13, 67, 14, 14, 14, 72, 15, 15, 15, 77, 16, 16, 16, 82, 17, 17, 17, 87, 18, 18, 18, 92, 19, 19, 19, 97, 20, 20, 20
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
Crossrefs
Programs
-
Mathematica
a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5}]], {n, 1, 100}]; Differences[a] LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {1, 1, 1, 7, 2, 2, 2, 12}, 50] (* G. C. Greubel, Feb 18 2017 *)
-
PARI
x='x+O('x^50); Vec(-x*(2*x^7-7*x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2+1)^2)) \\ G. C. Greubel, Feb 18 2017
Formula
a(n) = 2*a(n-4) - a(n-8). - R. J. Mathar, Apr 20 2008
a(n) = -(1/4)*mod(n,4)*x(4+mod(n,4))+(1/4)*n*x(4+mod(n,4))+x(mod(n,4))-(1/4)*n*x(mod(n,4))+(1/4)*mod(n,4)*x(mod(n,4)). - Alexander R. Povolotsky, Apr 20 2008
G.f.: -x*(2*x^7-7*x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Dec 13 2012
Comments