cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A137390 Numbers k for which (9 + k!)/9 is prime.

Original entry on oeis.org

8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1

Views

Author

Artur Jasinski, Apr 09 2008

Keywords

Comments

No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012

Examples

			a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
		

Crossrefs

Cf. A139068 (primes of the form (9 + k!)/9).
Cf. k!/m - 1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. (m + k!)/m is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A139071.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PFGW
    ABC2 $a!/9+1
    a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(10) corrected from 1053 to 1056 by Dmitry Kamenetsky, Jul 12 2008
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
a(12)-a(13) from Robert Price, Feb 10 2012

A139070 Primes of the form (10+k!)/10.

Original entry on oeis.org

13, 73, 3991681, 47900161, 130767436801, 2585201673888497664001, 40329146112660563558400001, 1376375309122634504631597958158090240000001, 11962222086548019456196316149565771506438373376000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (10+k!)/10 is prime see A139071.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, (n! + 10)/10]], {n, 1, 50}]; a
    Select[(Range[50]!+10)/10,PrimeQ] (* Harvey P. Dale, Sep 18 2013 *)
  • PARI
    for(k=5,1e3,if(ispseudoprime(t=k!/10+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139157(A139071(n)). - Amiram Eldar, Oct 14 2024

A139075 Primes p arising in A139074.

Original entry on oeis.org

3, 2, 3, 31, 1009, 2, 5702401, 631
Offset: 1

Views

Author

Artur Jasinski, Apr 08 2008, Apr 21 2008

Keywords

Comments

a(23) = (23+1579!)/23. - Andrew V. Sutherland, Apr 11 2008.
Smallest mother factorial prime p of order n, i.e. smallest prime of the form (p!+n)/n where p is prime.
For smallest daughter factorial prime p of order n see A139074.
For smallest father factorial prime p of order n see A139207.
For smallest son factorial prime p of order n see A139206.
a(9)=26737!/9+1 is a 106758 digit (probable) prime. Easily calculated but too large to enter here a(10)=13, a(11)=566092801, a(12)=11. [Robert Price, Jan 19 2011]

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a

A139061 Numbers n for which (4+n!)/4 is prime.

Original entry on oeis.org

4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (4+k!)/4, see A139060.
a(22) > 25000. - Robert Price, Jan 10 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(4+#!)/4]&]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=4,1e3,if(ispseudoprime(n!/4+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19) - a(21) from Robert Price, Jan 10 2017

A139157 a(n) = (n!+10)/10.

Original entry on oeis.org

13, 73, 505, 4033, 36289, 362881, 3991681, 47900161, 622702081, 8717829121, 130767436801, 2092278988801, 35568742809601, 640237370572801, 12164510040883201, 243290200817664001, 5109094217170944001
Offset: 5

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 10)/10, {n, 5, 30}]
  • PARI
    for(n=5, 20, a=(n!+10)/10; print1(a, ", ")) \\ Felix Fröhlich, Jul 07 2014

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139071 Numbers k for which (10+k!)/10 is prime.

Original entry on oeis.org

5, 6, 11, 12, 15, 23, 26, 37, 45, 108, 112, 129, 137, 148, 172, 248, 760, 807, 975, 1398, 5231, 8765, 24182
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Primes of the form (10+k!)/10 see A139070.
a(24) > 25000. - Robert Price, Nov 08 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=5,1e3,if(ispseudoprime(k!/10+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(22)-a(23) from Robert Price, Nov 08 2016

A139148 Smallest positive integer of the form (m!+n)/n.

Original entry on oeis.org

2, 2, 3, 7, 25, 2, 721, 4, 81, 13, 3628801, 3, 479001601, 361, 9, 46, 20922789888001, 41, 6402373705728001, 7, 241, 1814401, 1124000727777607680001, 2, 145153, 239500801, 13441, 181, 304888344611713860501504000001, 5
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[m!/n], m++ ]; AppendTo[a, (m! + n)/n], {n, 1, 50}]; a

Formula

a(n) = (n + (A002034(n))!)/n.
a(n) = A007672(n) + 1. - Charles R Greathouse IV, Dec 09 2014

A139160 a(n)=(prime(n)!+2)/2.

Original entry on oeis.org

2, 4, 61, 2521, 19958401, 3113510401, 177843714048001, 60822550204416001, 12926008369442488320001, 4420880996869850977271808000001, 4111419327088961408862781440000001
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

For numbers of the form (p(n)!+1)/1 see A139159
For numbers of the form (p(n)!+2)/2 see A139160
For numbers of the form (p(n)!+3)/3 see A139161
For numbers of the form (p(n)!+4)/4 see A139162
For numbers of the form (p(n)!+5)/5 see A139163
For numbers of the form (p(n)!+6)/6 see A139164
For numbers of the form (p(n)!+7)/7 see A139165
For numbers of the form (p(n)!+8)/8 see A139166
For numbers of the form (p(n)!+9)/9 see A139089
For numbers of the form (p(n)!+10)/10 see A139168
For offsets for above sequences see A139169
For smallest integers of the form (p(m)!+n)/n see A139170

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 2)/2, {n, 1, 30}]
  • PARI
    a(n)=prime(n)!/2 + 1 \\ Charles R Greathouse IV, Apr 29 2015

A139089 a(n) = prime(n)!/9 + 1.

Original entry on oeis.org

561, 4435201, 691891201, 39520825344001, 13516122267648001, 2872446304320552960001, 982417999304411328282624000001, 913648739353102535302840320000001
Offset: 4

Views

Author

Artur Jasinski, Apr 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 9)/9, {n, 4, 30}]
    Prime[Range[4,12]]!/9+1 (* Harvey P. Dale, Aug 22 2020 *)

A139059 Primes of the form (5+k!)/5.

Original entry on oeis.org

1009, 72577, 7983361, 17435658241, 24329020081766401, 5170403347776995328001, 23924444173096038912392632299131543012876746752000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (5+k!)/5 is prime see A139058.

Crossrefs

Programs

  • Magma
    [ a: n in [1..50] | IsPrime(a) and b mod 5 eq 0 where a is b div 5 where b is Factorial(n)+5 ];
    
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, (n! + 5)/5]], {n, 1, 50}]; a
    Select[(5+Range[50]!)/5,PrimeQ] (* Harvey P. Dale, Dec 04 2020 *)
  • PARI
    for(k=5,1e3,if(ispseudoprime(t=(5+k!)/5),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139152(A139058(n)). - Amiram Eldar, Oct 14 2024
Showing 1-10 of 33 results. Next