cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033715 Number of integer solutions (x, y) to the equation x^2 + 2y^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 4, 0, 6, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 2, 8, 0, 0, 8, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 4, 4, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 12, 2, 0, 8, 0
Offset: 0

Views

Author

Keywords

Comments

Theta series of lattice C2 with Gram matrix [ 1, 0; 0, 2]. a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Number 17 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by |a_4(n)| in Kassel and Reutenauer 2015. - Michael Somos, Jun 16 2015

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + ...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 114 Entry 8(iii).
  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 102, eq. 9.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 19.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.24).
  • J. W. L. Glaisher, Table of the excess of the number of (8k+1)- and (8k+3)-divisors of a number over the number of (8k+5)- and (8k+7)-divisors, Messenger Math., 31 (1901), 82-91.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 346.

Crossrefs

Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), this sequence (d=-8), A028609 (d=-11), A028641 (d=-19), A138811 (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 105); A[1] + 2*A[2] + 2*A[3]; /* Michael Somos, Aug 29 2014 */
  • Maple
    d:=proc(r,m,n) local i,t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; [seq(2*(d(1,8,n)+d(3,8,n)-d(5,8,n)-d(7,8,n)),n=1..120)];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Sep 09 2012 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2] QPochhammer[ q^4])^3 / (QPochhammer[ q] QPochhammer[ q^8])^2, {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (issquare(n) - issquare(2*n) + 2 * sum( i=1, sqrtint(n\2), issquare(n - 2*i^2))))};
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 2], n)[n])}; /* Michael Somos, Aug 23 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^8 + A)^-2, n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1,2]); Q.representation_number_list(104); # Peter Luschny, Jun 20 2014
    

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
Euler transform of period 8 sequence [ 2, -1, 2, -4, 2, -1, 2, -2, ...].
Expansion of (eta(q^2) * eta(q^4))^3 / (eta(q) * eta(q^8))^2 in powers of q.
Coefficients in expansion of Sum_{i,j=-inf..inf} q^(i^2 + 2*j^2).
G.f. = s(2)^3*s(4)^3/(s(1)^2*s(8)^2), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: 1 + 2 * Sum_{k>0} Kronecker(-2, n) * x^k / (1 - x^k) = 1 + 2 * Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(4*k)).
G.f.: theta_3(q) * theta_3(q^2) = Product_{k>0} (1 + x^(2*k)) * ((1 + x^k) * (1 - x^(2*k)) / (1 + x^(4*k)))^2.
From Michael Somos, Oct 23 2006: (Start)
Moebius transform is period 8 sequence [ 2, 0, 2, 0, -2, 0, -2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u1 - 3*u3) * (u1 - u2 - u3 + u6) - (u2 - 3*u6) * (u1 - 2*u2 - u3 + 2*u6). (End)
a(n) = 2 * A002325(n) unless n = 0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 09 2012
From Michael Somos, Aug 29 2014: (Start)
Expansion of phi(q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.
a(2*n) = a(n). a(2*n + 1) = 2 * A113411(n). (End)
From Michael Somos, May 17 2015: (Start)
a(n) = A028572(4*n) = A133692(2*n) = A139093(8*n) = A226225(8*n) = A226240(4*n) = A242609(4*n) = A245572(4*n) / 3 = (-1)^floor((n + 1)/2) * A082564(n).
a(8*n + 5) = a(8*n + 7) = 0. a(8*n + 1) = 2 * A112603(n). a(8*n + 3) = 4 * A033761(n). (End)
a(0) = 1, a(n) = 2 * b(n) for n > 0, where b() is multiplicative with b(2^e) = 1, b(p^e) = e + 1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8). - Jianing Song, Sep 04 2018 [Corrected by Jeremy Lovejoy, Nov 12 2024]
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/sqrt(2) = 2.221441... (A247719). - Amiram Eldar, Dec 16 2023

A112603 Number of representations of n as the sum of a square and a triangular number.

Original entry on oeis.org

1, 3, 2, 1, 4, 2, 1, 4, 0, 2, 5, 2, 2, 0, 2, 3, 4, 2, 0, 6, 0, 1, 4, 0, 2, 4, 4, 0, 3, 2, 2, 4, 2, 0, 0, 2, 3, 8, 0, 2, 4, 0, 2, 0, 2, 3, 6, 0, 0, 4, 2, 2, 4, 2, 2, 3, 2, 2, 0, 4, 0, 4, 0, 0, 8, 2, 1, 4, 0, 0, 8, 2, 2, 0, 2, 2, 0, 2, 1, 4, 2, 4, 6, 0, 2, 4, 0, 4, 0, 0, 0, 7, 4, 0, 4, 2, 2, 0, 0, 0, 6, 2, 4, 4, 2
Offset: 0

Views

Author

James Sellers, Dec 21 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(4) = 4 since we can write 4 = 2^2 + 0 = (-2)^2 + 0 = 1^2 + 3 = (-1)^2 + 3.
1 + 3*x + 2*x^2 + x^3 + 4*x^4 + 2*x^5 + x^6 + 4*x^7 + 2*x^9 + 5*x^10 + ...
q + 3*q^9 + 2*q^17 + q^25 + 4*q^33 + 2*q^41 + q^49 + 4*q^57 + 2*q^73 + ...
		

Crossrefs

Cf. A139093.

Programs

  • Mathematica
    a[n_] := DivisorSum[8n + 1, KroneckerSymbol[-2, #]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 1; sumdiv( n, d, kronecker( -2, d)))} /* Michael Somos, Sep 29 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 /(eta(x + A)^3 * eta(x^4 + A)^2), n))} /* Michael Somos, Sep 29 2006 */

Formula

a(n) = A002325(8n+1). [Hirschhorn]
Expansion of q^(-1/8) * eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2) in powers of q. - Michael Somos, Sep 29 2006
Expansion of phi(q) * psi(q) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Sep 29 2006
Euler transform of period 4 sequence [ 3, -4, 3, -2, ...]. - Michael Somos, Sep 29 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A139093. - Michael Somos, Mar 16 2011
G.f.: (Sum_{k} x^(k^2)) * (Sum_{k>0} x^((k^2 - k)/2)). - Michael Somos, Sep 29 2006

A207541 Expansion of phi(q)^3 * phi(-q) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 0, -16, -8, 24, 0, -32, 24, 52, 0, -48, -32, 56, 0, -96, 24, 72, 0, -80, -48, 128, 0, -96, 96, 124, 0, -160, -64, 120, 0, -128, 24, 192, 0, -192, -104, 152, 0, -224, 144, 168, 0, -176, -96, 312, 0, -192, 96, 228, 0, -288, -112, 216, 0, -288, 192, 320, 0
Offset: 0

Views

Author

Michael Somos, Feb 26 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 4*q - 16*q^3 - 8*q^4 + 24*q^5 - 32*q^7 + 24*q^8 + 52*q^9 - 48*q^11 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]^3*EllipticTheta[3, 0, -q], {q, 0, n}]; Table[A207541[n], {n, 0, 50}] (* G. C. Greubel, Dec 16 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^3))^2, n))}

Formula

Expansion of phi(-q^4)^4 + 4 * q * psi(-q^2)^4 = phi(q)^3 * phi(-q) = phi(q)^2 * phi(-q^2)^2 = psi(q)^4 * chi(-q^2)^6 = phi(-q^2)^6 / phi(-q)^2 = f(q)^6 / psi(q)^2 = f(q)^4 * chi(-q^2)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of (eta(q^2)^7 / (eta(q)^2 * eta(q^4)^3))^2 in powers of q.
Euler transform of period 4 sequence [ 4, -10, 4, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 128 (t/i)^2 g(t) where q = exp(2 Pi i t) and g(t) is g.f. for A112610.
G.f.: Product_{k>0} (1 - x^(2*k))^14 / ((1 - x^k)^4 * (1 - x^(4*k))^6).
a(3*n + 2) = 24 * A208435(n). a(4*n + 2) = 0. a(2*n + 1) = 4 * A121613(n). a(4*n) = A096727(n). a(4*n + 1) = 4 * A112610(n). a(4*n + 3) = -16 * A097723(n). Convolution square of A139093.
Showing 1-3 of 3 results.