cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A139237 Second differences of even superperfect numbers A061652, divided by 2.

Original entry on oeis.org

5, 18, 1992, 28704, 67584, 536641536, 576460751229812736, 154742503757751030292414464, 40564509722294095963578081214464, 42535214735633635831150802674328272896
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Comments

Second differences of Mersenne primes A000668, divided by 4 (see A139232).
Also, second differences of superperfect numbers A019279, divided by 2, if there are no odd superperfect numbers.

Crossrefs

Programs

  • Mathematica
    Differences[2^MersennePrimeExponent[Range[14]]-1,2]/4 (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A139236(n)/2.

Extensions

More terms from Michel Marcus, Jul 09 2017

A139228 First differences of perfect numbers A000396.

Original entry on oeis.org

22, 468, 7632, 33542208, 8556318720, 128848822272, 2305842870701260800, 2658455991569831742348849607813890048, 191561942608236104636337386514471893476304705594327040
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Examples

			a(1) = 22 because 6 and 28 are the first two perfect numbers, and their difference is 28 - 6 = 22.
		

Crossrefs

Programs

  • Mathematica
    Differences[Select[Range[10000], DivisorSigma[1, #] == 2# &]] (* Alonso del Arte, Mar 05 2020 *)
    Differences[PerfectNumber[Range[12]]] (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A000396(n+1) - A000396(n).
From Amiram Eldar, May 07 2021: (Start)
a(n) > 1 (Luca, 1999).
a(n) > 4 (Luca and te Riele, 2011). (End)

Extensions

More terms from Omar E. Pol, Oct 02 2012

A139230 Second differences of perfect numbers A000396.

Original entry on oeis.org

446, 7164, 33534576, 8522776512, 120292503552, 2305842741852438528, 2658455991569831740043006737112629248, 191561942608236101977881394944640151127455097780436992
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[PerfectNumber[Range[12]],2] (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A139228(n+1) - A139228(n). - Jinyuan Wang, Mar 04 2020

Extensions

a(5)-a(8) from Jinyuan Wang, Mar 04 2020

A139231 First differences of Mersenne primes A000668.

Original entry on oeis.org

4, 24, 96, 8064, 122880, 393216, 2146959360, 2305843007066210304, 618970017336847128235868160, 162258657859193720701440560726016, 170141021201192402518323912137873817600
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Examples

			a(1)=4 because A000668(1)=3 and A000668(2)=7 then 7-3 = 4.
		

Crossrefs

Programs

  • Mathematica
    A000668 := Select[2^Range[1000] - 1, PrimeQ]; Table[A000668[[n + 1]] - A000668[[n]], {n, 1, 10}] (* G. C. Greubel, Oct 03 2017 *)
    Differences[2^MersennePrimeExponent[Range[20]]-1] (* Harvey P. Dale, Mar 31 2022 *)
  • PARI
    a=0; b=0; forprime(p=1, 1e2, if(ispseudoprime(2^p-1) && a==0, a=2^p-1); if(ispseudoprime(2^p-1) && a!=0, b=2^p-1; if(a!=b, print1(b-a, ", ")); a=b)) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A000668(n+1) - A000668(n).

Extensions

a(8)-a(11) from Felix Fröhlich, Aug 12 2014

A139232 Second differences of Mersenne primes A000668.

Original entry on oeis.org

20, 72, 7968, 114816, 270336, 2146566144, 2305843004919250944, 618970015031004121169657856, 162258038889176383854312324857856, 170140858942534543324603210697313091584
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2008

Keywords

Comments

Second differences of even superperfect numbers, multiplied by 2 (see A139236).

Crossrefs

Programs

Formula

a(n) = A139236(n)*2.

Extensions

Terms a(7) - a(10) added by G. C. Greubel, Oct 03 2017

A139233 Second differences of perfect numbers A000396, divided by 2.

Original entry on oeis.org

223, 3582, 16767288, 4261388256, 60146251776, 1152921370926219264, 1329227995784915870021503368556314624, 95780971304118050988940697472320075563727548890218496
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[PerfectNumber[Range[12]],2]/2 (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A139230(n)/2.

Extensions

a(5)-a(8) from Jinyuan Wang, Mar 04 2020

A139235 First differences of even superperfect numbers A061652, divided by 2.

Original entry on oeis.org

1, 6, 24, 2016, 30720, 98304, 536739840, 576460751766552576, 154742504334211782058967040, 40564664464798430175360140181504, 42535255300298100629580978034468454400
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Comments

First differences of Mersenne primes A000668, divided by 4 (see A139231).
Also, first differences of superperfect numbers A019279, divided by 2, if there are no odd superperfect numbers.

Crossrefs

Programs

  • Mathematica
    Differences[2^MersennePrimeExponent[Range[14]]-1]/4 (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A139234(n)/2.

Extensions

a(8)-a(11) from Jinyuan Wang, Mar 04 2020

A139236 Second differences of even superperfect numbers A061652.

Original entry on oeis.org

10, 36, 3984, 57408, 135168, 1073283072, 1152921502459625472, 309485007515502060584828928, 81129019444588191927156162428928, 85070429471267271662301605348656545792
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Comments

Second differences of Mersenne primes A000668, divided by 2 (see A139232).
Also, second differences of superperfect numbers A019279, if there are no odd superperfect numbers.

Crossrefs

Programs

  • Mathematica
    Differences[2^(Select[Range[512],PrimeQ[2^#-1]&]-1),2] (* Harvey P. Dale, Oct 15 2017 *)

Formula

a(n) = A139234(n+1) - A139234(n).

Extensions

a(6) corrected and more terms from Joerg Arndt, Jul 09 2017

A139234 First differences of even superperfect numbers A061652.

Original entry on oeis.org

2, 12, 48, 4032, 61440, 196608, 1073479680, 1152921503533105152, 309485008668423564117934080, 81129328929596860350720280363008, 85070510600596201259161956068936908800
Offset: 1

Views

Author

Omar E. Pol, Apr 18 2008

Keywords

Comments

First differences of Mersenne primes A000668, divided by 2 (see A139231).
Also, first differences of superperfect numbers A019279, if there are no odd superperfect numbers.

Examples

			a(2) = 12 because A061652(2) = 4 and A061652(3) = 16 then 16 - 4 = 12.
		

Crossrefs

Programs

  • Mathematica
    Differences[Table[2^(MersennePrimeExponent[n]-1),{n,12}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 18 2020 *)

Formula

a(n) = A061652(n+1) - A061652(n) = A139231(n)/2. Also, a(n) = A019279(n+1) - A019279(n), if there are no odd superperfect numbers.

Extensions

a(8)-a(11) from A139231(n)/2 by Jinyuan Wang, Mar 04 2020

A139239 First differences of Mersenne numbers A001348, divided by 2.

Original entry on oeis.org

2, 12, 48, 960, 3072, 61440, 196608, 3932160, 264241152, 805306368, 67645734912, 1030792151040, 3298534883328, 65970697666560, 4433230883192832, 283726776524341248, 864691128455135232, 72634054790231359488, 1106804644422573096960, 3541774862152233910272, 297509088420787648462848
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[2^Prime[Range[25]]-1]/2 (* Paolo Xausa, Oct 20 2023 *)

Formula

a(n) = A139238(n)/2.

Extensions

a(10)-a(21) from Paolo Xausa, Oct 20 2023
Showing 1-10 of 10 results.