cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A337449 The numbers k for which Lucas(k) are Niven numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 56, 81, 130, 225, 396, 637, 854, 2034, 4059, 4095, 5985, 7650, 21105, 31059, 41998, 46860, 83106, 114129, 120555, 150705, 201285, 287937, 338265, 359757, 475839, 512194, 583825, 606594, 627102, 717025, 877305, 922095, 991590, 1076355
Offset: 1

Views

Author

Marius A. Burtea, Sep 14 2020

Keywords

Comments

For a(6) = 6, Lucas(6) = 18 and 18/digsum(18) = 2 is a prime number, so Lucas(6) is a Moran number (A001101).
For a(9) = 56, Lucas(56) = 505019158607 and 505019158607/digsum(505019158607) = 10745088481 is a prime number, so Lucas(56) is a Moran number.

Examples

			Lucas(0) = 2 = A005349(2), so 0 is a term.
Lucas(1) = 1 = A005349(1), so 1 is a term.
Lucas(6) = 12 = A005349(11), so 6 is a term.
Lucas(12) = 322 = A005349(90), so 12 is a term.
Lucas(18) = 5778 = A005349(1013), so 18 is a term.
		

Crossrefs

Programs

  • Magma
    niven:=func; [k:k in [0..70000]|niven(Lucas(k))];
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n]]; Select[Range[6000], nivenQ[LucasL[#]] &] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    isok(k) = my(l=real((2+quadgen(5))*quadgen(5)^k)); (l % sumdigits(l)) == 0; \\ Michel Marcus, Sep 15 2020
    
  • Python
    A337449_list, k, p, q = [], 0, 2, 1
    while k < 10**6:
        if p % sum(int(d) for d in str(p)) == 0:
            A337449_list.append(k)
        k += 1
        p, q = q, p+q # Chai Wah Wu, Sep 17 2020

A259773 Product of the digits of the n-th Lucas number.

Original entry on oeis.org

2, 1, 3, 4, 7, 1, 8, 18, 28, 42, 6, 81, 12, 10, 96, 72, 0, 105, 1960, 972, 70, 1344, 0, 0, 0, 1764, 672, 0, 0, 1440, 0, 0, 0, 24192, 0, 0, 34560, 0, 0, 1536, 43008, 0, 0, 0, 0, 0, 0, 41803776, 0, 0, 120960, 3024000, 0, 120960, 0, 0, 0, 6531840, 0, 440899200
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2015

Keywords

Comments

Probably, the last nonzero term is a(401) = 2^71*3^45*5^9*7^4. - Giovanni Resta, Jul 14 2015

Examples

			9349 is the 19th Lucas number; its digit product is 972, therefore a(19) = 972.
15127 is the 20th Lucas number; its digit product is 70, therefore a(20) = 70.
		

Crossrefs

Programs

  • Magma
    [&*Intseq(Lucas(n)): n in [0..80]];
  • Mathematica
    Table[Times@@IntegerDigits[LucasL[n]], {n, 0, 100}]

Formula

a(n) = A007954(A000032(n)). - Michel Marcus, Jul 05 2015

A244923 Numbers n such that the digit sum of Fibonacci(n) is equal to the digit sum of Lucas(n).

Original entry on oeis.org

1, 13, 61, 73, 97, 217, 349, 649, 937, 1477, 1513, 1729, 2005, 2077, 2209, 3265, 3649, 3889, 4093, 4609, 4945, 5497, 5749, 5929, 6109, 7309, 7441, 8041, 8389, 8821, 9925, 10525, 10669, 11605, 13201, 13345, 16021, 18529, 18649, 20293, 21481, 22573, 22729, 24169
Offset: 1

Views

Author

Michel Lagneau, Jul 08 2014

Keywords

Comments

Numbers n such that A004090(n) = A139374(n).
Subsequence of A017533.
It seems that n is odd. The primes of the sequence are: 13, 61, 73, 97, 349, 937, 3889, 4093, 5749, 7309, 8389, 8821, 21481, 22573, 24169, ...
Fibonacci(j) == Lucas(j) (mod 9) iff j == 1 (mod 12), so all a(n) == 1 (mod 12). - Robert Israel, Jul 10 2014

Examples

			13 is in the sequence because Fibonacci(13) = 233, Lucas(13) = 521 and 2+3+3 = 5+2+1 = 8.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Table[If[Total[IntegerDigits[LucasL[n]]] == Total[IntegerDigits[Fibonacci[n]]], AppendTo[lst, n]], {n, 0, 25000}]; lst
    Select[Range[25000],Total[IntegerDigits[Fibonacci[#]]]==Total[IntegerDigits[LucasL[#]]]&] (* Harvey P. Dale, Mar 31 2024 *)
Showing 1-3 of 3 results.