cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A139474 a(n) = ((2*sqrt(2) + 3)^(2^(prime(n) - 1) - 1) - (3 - 2*sqrt(2))^(2^(prime(n) - 1) - 1))/(4*sqrt(2)).

Original entry on oeis.org

1, 35, 53789260175, 300027707381709879256191290532493317737977820735
Offset: 1

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Comments

Next term a(5) has 783 decimal digits.
Conjecture of Kenneth J Ramsey from May 16 2006 (see A001109): a(n) is divisible by 2^prime(n)-1 if and only 2^prime(n)-1 is a Mersenne prime.

Crossrefs

Programs

  • Mathematica
    Table[Expand[((2*Sqrt[2] + 3)^(2^(Prime[n] - 1) - 1) - (3 - 2*Sqrt[2])^(2^(Prime[n] - 1) - 1))/(4*Sqrt[2])], {n, 1, 10}]

A139475 Number of digits in the decimal expansion of A139474(n).

Original entry on oeis.org

1, 2, 11, 48, 783, 3135, 50170
Offset: 1

Views

Author

Artur Jasinski, Apr 22 2008, Sep 29 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerDigits[Expand[((2*Sqrt[2] + 3)^(2^(Prime[n] - 1) - 1) - (3 - 2*Sqrt[2])^(2^(Prime[n] - 1) - 1))/(4*Sqrt[2])]]], {n, 1, 6}]

Formula

a(n) = A055642(A139474(n)). - Amiram Eldar, Oct 13 2024

Extensions

a(7) from Amiram Eldar, Oct 13 2024

A139473 a(n)=((2*Sqrt[2] + 3)^(2^(n - 1) - 1) - (3 - 2*Sqrt[2])^(2^(n - 1) - 1))/(4*Sqrt[2]).

Original entry on oeis.org

0, 1, 35, 40391, 53789260175, 95393218491883573553951, 300027707381709879256191290532493317737977820735
Offset: 1

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Expand[((2*Sqrt[2] + 3)^(2^(n - 1) - 1) - (3 - 2*Sqrt[2])^(2^(n - 1) - 1))/(4*Sqrt[2])], {n, 1, 10}] (*Artur Jasinski*)

A139478 a(n) = A001109(n) in binary.

Original entry on oeis.org

1, 110, 100011, 11001100, 10010100101, 1101100010010, 1001110111000111, 111001011110011000, 101001110111111001001, 11110100000011100011110, 10110001110011101011101011, 10000001100010101101001100100
Offset: 1

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = IntegerDigits[Expand[((2*Sqrt[2] + 3)^(n) - (3 - 2*Sqrt[2])^(n))/(4*Sqrt[2])], 2]; AppendTo[a, FromDigits[k]], {n, 1, 50}]; a (*Artur Jasinski*)

A139477 Number of binary digits in A001109(n).

Original entry on oeis.org

1, 1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 62, 64, 67, 69, 72, 74, 77, 79, 82, 84, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 118, 120, 123, 125, 128, 130, 133, 135, 138, 140, 143, 146, 148, 151, 153, 156, 158, 161, 163, 166, 168
Offset: 0

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Crossrefs

Programs

  • Maple
    a[0]:= 0: a[1]:= 1: R[0]:= 1: R[1]:= 1:
    for n from 2 to 100 do
       a[n]:=  6*a[n-1] - a[n-2];
       R[n]:= ilog2(a[n])+1;
    od:
    seq(R[i],i=0..100); # Robert Israel, Nov 23 2024
  • Mathematica
    a = {}; Do[k = Length[IntegerDigits[Expand[((2*Sqrt[2] + 3)^(n) - (3 - 2*Sqrt[2])^(n))/(4*Sqrt[2])], 2]]; Print[k]; AppendTo[a, k], {n, 1, 50}]; a
    Rest[IntegerLength[#,2]&/@LinearRecurrence[{6,-1},{0,1},60]] (* Harvey P. Dale, Feb 11 2015 *)

Formula

a(n) = A070939(A001109(n)). - Michel Marcus, Nov 02 2013

Extensions

Incorrect link to index entries for linear recurrences with constant coefficients removed by Colin Barker, Oct 13 2015
a(0) = 1 prepended and more terms by Robert Israel, Nov 23 2024

A140418 Position of cubes in the EKG sequence (A064413).

Original entry on oeis.org

1, 8, 22, 64, 112, 199, 319, 485, 696, 958, 1279, 1649, 2090, 2612, 3241, 3932, 4733, 5608, 6583, 7707, 8926
Offset: 1

Views

Author

Parthasarathy Nambi, Jun 17 2008

Keywords

Comments

The squares (A139476), primes (A064955) and cubes (this sequence) all appear in increasing order. Is this true for all other powers also?

Examples

			The position of 3^3 is 22.
The position of 5^3 is 112.
		

Crossrefs

Showing 1-6 of 6 results.