cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139665 Primes of the form x^2 + 840*y^2.

Original entry on oeis.org

1009, 1129, 1201, 1801, 2521, 2689, 3049, 3361, 3529, 3889, 4201, 4561, 4729, 5209, 5569, 5881, 6841, 7561, 7681, 8089, 8521, 8689, 8761, 8929, 9241, 9601, 9769, 10369, 12049, 12289, 12601, 12721, 12889, 13441, 13729, 14281, 14401, 14449, 15121, 15241
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant = -3360. See A139643 for more information.
The primes are congruent to {1, 121, 169, 289, 361, 529} (mod 840).
Also, primes that in 1969 were unverified values for n for the Erdos-Straus conjecture (that 4/n = 1/x + 1/y + 1/z is always solvable in natural numbers), see Mordell 1969. - Ron Knott, Dec 11 2013
There are 273 terms < 100000 in this sequence. Of these, 59 are of the form 11n-3 or 11n-4. Since 4/(11*n-3)= 1/(3*n) + 1/(3*(11*n-3)) + 1/(n*(11*n-3)) and 4/(11*n-4)= 1/(3*n-1) + 1/(3*(11*n-4)) + 1/(3*(3*n-1)*(11*n-4)), these terms can be removed from the set of primes not proved for the Erdős-Straus conjecture. For example: 1009 = 11*92-3 so 4/1009 = 1/(3*92)+1/(3*1009)+1/(92*1009). These formulas were taken from the tables in Chapter 1 of the Mishima link. - Gary Detlefs, Jan 27 2014

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D11.
  • L. J. Mordell, Diophantine Equations, Academic press, 1969, pages 287-290.

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(15000) | p mod 840 in {1, 121, 169, 289, 361, 529}]; // Vincenzo Librandi, Jul 29 2012
    
  • Magma
    k:=840; [p: p in PrimesUpTo(16000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 840, 10000] (* see A106856 *)
    Select[Table[Prime[n], {n, 1, 5000}], MemberQ[{1, 11^2, 13^2, 17^2, 19^2, 23^2}, Mod[#, 840]] &] (* Ron Knott, Dec 11 2013 *)

Formula

From Gary Detlefs, Jan 22 2014: (Start)
a(n) == {1,25,49,73} (mod 96);
a(n)^2 == {1,49} (mod 96);
a(n)^4 == 1 (mod 96). (End)
a(n) == {1,9,25} (mod 56). - Gary Detlefs, Jan 27 2014