A139665 Primes of the form x^2 + 840*y^2.
1009, 1129, 1201, 1801, 2521, 2689, 3049, 3361, 3529, 3889, 4201, 4561, 4729, 5209, 5569, 5881, 6841, 7561, 7681, 8089, 8521, 8689, 8761, 8929, 9241, 9601, 9769, 10369, 12049, 12289, 12601, 12721, 12889, 13441, 13729, 14281, 14401, 14449, 15121, 15241
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D11.
- L. J. Mordell, Diophantine Equations, Academic press, 1969, pages 287-290.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi).
- Ron Knott, Egyptian Fractions.
- H. H. Mishima, Overview of "Mathematician's Secret Room".
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references).
Programs
-
Magma
[ p: p in PrimesUpTo(15000) | p mod 840 in {1, 121, 169, 289, 361, 529}]; // Vincenzo Librandi, Jul 29 2012
-
Magma
k:=840; [p: p in PrimesUpTo(16000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
-
Mathematica
QuadPrimes2[1, 0, 840, 10000] (* see A106856 *) Select[Table[Prime[n], {n, 1, 5000}], MemberQ[{1, 11^2, 13^2, 17^2, 19^2, 23^2}, Mod[#, 840]] &] (* Ron Knott, Dec 11 2013 *)
Formula
From Gary Detlefs, Jan 22 2014: (Start)
a(n) == {1,25,49,73} (mod 96);
a(n)^2 == {1,49} (mod 96);
a(n)^4 == 1 (mod 96). (End)
a(n) == {1,9,25} (mod 56). - Gary Detlefs, Jan 27 2014
Comments