cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016135 Expansion of g.f. 1/((1-2*x)*(1-11*x)).

Original entry on oeis.org

1, 13, 147, 1625, 17891, 196833, 2165227, 23817625, 261994131, 2881935953, 31701296507, 348714263625, 3835856903971, 42194425951873, 464138685486987, 5105525540389625, 56160780944351411, 617768590387996593, 6795454494268224667, 74749999436950995625, 822249993806462000451
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A139740.

Programs

  • Mathematica
    LinearRecurrence[{13,-22},{1,13},30] (* or *) CoefficientList[Series[ 1/((1-2x)*(1-11x)),{x,0,30}],x] (* Harvey P. Dale, Oct 15 2011 *)
  • PARI
    a(n)=(11^n++-2^n)/9 \\ Charles R Greathouse IV, Mar 26 2012
  • Sage
    [(11^(n+1) - 2^(n+1))/9 for n in range(0,20)] # Zerinvary Lajos, Jun 05 2009
    

Formula

a(n) = (11^(n+1) - 2^(n+1))/9. - Zerinvary Lajos, Jun 05 2009
a(n) = 13*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Jun 02 2011
From Elmo R. Oliveira, Mar 08 2025: (Start)
E.g.f.: exp(2*x)*(11*exp(9*x) - 2)/9.
a(n) = A139740(n+1)/9. (End)

Extensions

Incorrect comment removed by Charles R Greathouse IV, Mar 26 2012

A248216 a(n) = 6^n - 2^n.

Original entry on oeis.org

0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Sequences of the form k^n - 2^n: A001047 (k=3), A020522 (k=4), A005057 (k=5), this sequence (k=6), A190540 (k=7), A248217 (k=8), A191465 (k=9), A060458 (k=10), A139740 (k=11).

Programs

  • Magma
    [6^n-2^n: n in [0..25]];
    
  • Mathematica
    Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x]
    LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
  • Sage
    [2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021

Formula

G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
a(n) = 2^n*(3^n - 1) = A000079(n) * A024023(n).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022
a(n) = A000400(n) - A000079(n). - Bernard Schott, Mar 27 2022
Showing 1-2 of 2 results.