cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A016325 Expansion of 1/((1-2x)(1-10x)(1-11x)).

Original entry on oeis.org

1, 23, 377, 5395, 71841, 915243, 11317657, 136994195, 1631936081, 19201296763, 223714264137, 2585856904995, 29694425953921, 339138685491083, 3855525540397817, 43660780944367795, 492768590388029361
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*11^(n+2) +2^n-225*10^n)/18 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1 - 2 x) (1 - 10 x) (1 - 11 x)), {x, 0, 16}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • PARI
    Vec(1/((1-2*x)*(1-10*x)*(1-11*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
  • Sage
    [(11^n - 2^n)/9-(10^n - 2^n)/8 for n in range(2,19)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Zerinvary Lajos, Jun 05 2009 [corrected by R. J. Mathar, Mar 14 2011]: (Start)
a(n) = 11^(n+2)/9 + 2^(n-1)/9 - 25*10^n/2.
a(n) = A016135(n+1) - A016134(n+1). (End)
a(n) = 21*a(n-1) - 110*a(n-2) + 2^n. - Vincenzo Librandi, Oct 09 2011

A211072 Sum of numbers with no '0' decimal digits whose sum of digits equals n.

Original entry on oeis.org

0, 1, 13, 147, 1625, 17891, 196833, 2165227, 23817625, 261994131, 2881935943, 31701296375, 348714262017, 3835856884757, 42194425724149, 464138682802857, 5105525508895321, 56160780576260645, 617768586100819485, 6795454444489330049, 74749998860563784655
Offset: 0

Views

Author

Keywords

Comments

Different from A016135.

Examples

			2 and 11 are the only numbers without 0's which have digit sum 2, so a(2) = 2 + 11 = 13.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->
          [p[1], p[2]*10+p[1]*d])(b(n-d)), d=1..min(n, 9)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 19 2020

Formula

G.f.: x*(9*x^8 + 8*x^7 + 7*x^6 + 6*x^5 + 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/((x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)*(10*x^9 + 10*x^8 + 10*x^7 + 10*x^6 + 10*x^5 + 10*x^4 + 10*x^3 + 10*x^2 + 10*x - 1)). - Yurii Ivanov, Jul 06 2021

Extensions

a(0)=0 prepended by Alois P. Heinz, Feb 19 2020

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Views

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A139740 a(n) = 11^n - 2^n.

Original entry on oeis.org

0, 9, 117, 1323, 14625, 161019, 1771497, 19487043, 214358625, 2357947179, 25937423577, 285311668563, 3138428372625, 34522712135739, 379749833566857, 4177248169382883, 45949729863506625, 505447028499162699, 5559917313491969337, 61159090448414022003, 672749994932558960625
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 13*a(n-1) - 22*a(n-2). - Vincenzo Librandi, Jun 02 2011
a(n) = A001020(n) - A000079(n). - Michel Marcus, Feb 28 2022
a(n) = 9*A016135(n-1), n > 0. - Bernard Schott, Mar 09 2022
E.g.f.: exp(2*x)*(exp(9*x) - 1). - Stefano Spezia, Mar 09 2025
G.f.: 9*x/((1-2*x)*(1-11*x)). - Elmo R. Oliveira, Mar 15 2025

A016633 Expansion of g.f. 1/((1-2*x)*(1-11*x)*(1-12*x)).

Original entry on oeis.org

1, 25, 447, 6989, 101759, 1417941, 19180519, 253983853, 3309800367, 42599540357, 542895780791, 6863463633117, 86197420501375, 1076563471968373, 13382900349107463, 165700329729679181, 2044564737700501583, 25152545442794015589, 308625999807796411735, 3778261997130507936445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(648*12^n +2^(n+1)-5*11^(n+2))/45 : n in [0..20]]; // Vincenzo Librandi, Oct 09 2011
    
  • Mathematica
    CoefficientList[Series[1/((1 - 2 x) (1 - 11 x) (1 - 12 x)), {x, 0, 15}], x] (* Michael De Vlieger, Jan 31 2018 *)
  • PARI
    Vec(1/((1-2*x)*(1-11*x)*(1-12*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
  • Sage
    [(12^n - 2^n)/10-(11^n - 2^n)/9 for n in range(2,18)] # Zerinvary Lajos, Jun 05 2009
    

Formula

From Vincenzo Librandi, Oct 09 2011: (Start)
a(n) = (648*12^n + 2^(n+1) - 5*11^(n+2))/45.
a(n) = 23*a(n-1) - 132*a(n-2) + 2^n.
a(n) = 25*a(n-1) - 178*a(n-2) + 264*a(n-3), n >= 3. (End)
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(2*x)*(648*exp(10*x) - 605*exp(9*x) + 2)/45.
a(n) = A016136(n+1) - A016135(n+1). (End)

A096044 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^10-M)/9, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 11, 2, 111, 33, 3, 1111, 444, 66, 4, 11111, 5555, 1110, 110, 5, 111111, 66666, 16665, 2220, 165, 6, 1111111, 777777, 233331, 38885, 3885, 231, 7, 11111111, 8888888, 3111108, 622216, 77770, 6216, 308, 8, 111111111, 99999999, 39999996, 9333324, 1399986, 139986, 9324, 396, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle T(n,k) begins:
       1;
      11,     2;
     111,    33,     3;
    1111,   444,    66,    4;
   11111,  5555,  1110,  110,   5;
  111111, 66666, 16665, 2220, 165, 6;
  ...
		

Crossrefs

Cf. A007318. First column gives A000042. Row sums give A016135.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^10-M)/9 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11);  # Alois P. Heinz, Oct 07 2009
  • Mathematica
    P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 10] - M)/9]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Extensions

Edited and more terms from Alois P. Heinz, Oct 07 2009
Showing 1-6 of 6 results.