cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140091 a(n) = 3*n*(n + 3)/2.

Original entry on oeis.org

0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, 231, 270, 312, 357, 405, 456, 510, 567, 627, 690, 756, 825, 897, 972, 1050, 1131, 1215, 1302, 1392, 1485, 1581, 1680, 1782, 1887, 1995, 2106, 2220, 2337, 2457, 2580, 2706, 2835, 2967
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) is also the dimension of the irreducible representation of the Lie algebra sl(3) with the highest weight 2*L_1+n*(L_1+L_2). - Leonid Bedratyuk, Jan 04 2010
Number of edges in the hexagonal triangle, T(n) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
a(n) = twice the area of a triangle having vertices at binomials (C(n,3),C(n+3,3)), (C(n+1,3),C(n+4,3)), and (C(n+2,3),C(n+5,3)) with n>=2. - J. M. Bergot, Mar 01 2018

References

  • W. Fulton, J. Harris, Representation theory: a first course. (1991). page 224, Exercise 15.19. - Leonid Bedratyuk, Jan 04 2010

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, this sequence, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = A000096(n)*3 = (3*n^2 + 9*n)/2 = n*(3*n+9)/2.
a(n) = a(n-1) + 3*n + 3 with n>0, a(0)=0. - Vincenzo Librandi, Nov 24 2010
G.f.: 3*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 15 2015
E.g.f.: (1/2)*(3*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 11/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 5/27. (End)