cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140672 a(n) = n*(3*n + 13)/2.

Original entry on oeis.org

0, 8, 19, 33, 50, 70, 93, 119, 148, 180, 215, 253, 294, 338, 385, 435, 488, 544, 603, 665, 730, 798, 869, 943, 1020, 1100, 1183, 1269, 1358, 1450, 1545, 1643, 1744, 1848, 1955, 2065, 2178, 2294, 2413, 2535, 2660, 2788, 2919, 3053
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

  • Magma
    [(3*n^2 + 13*n)/2 : n in [0..80]]; // Wesley Ivan Hurt, Dec 27 2023
  • Mathematica
    Table[n (3 n + 13)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 8, 19}, 50] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    a(n)=n*(3*n+13)/2 \\ Charles R Greathouse IV, Sep 24 2015
    

Formula

a(n) = (3*n^2 + 13*n)/2.
a(n) = 3*n + a(n-1) + 5 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=8, a(2)=19; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 16 2011
G.f.: x*(8 - 5*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 +16*x)*exp(x). - G. C. Greubel, Jul 17 2017