A140672 a(n) = n*(3*n + 13)/2.
0, 8, 19, 33, 50, 70, 93, 119, 148, 180, 215, 253, 294, 338, 385, 435, 488, 544, 603, 665, 730, 798, 869, 943, 1020, 1100, 1183, 1269, 1358, 1450, 1545, 1643, 1744, 1848, 1955, 2065, 2178, 2294, 2413, 2535, 2660, 2788, 2919, 3053
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
Crossrefs
Programs
-
Magma
[(3*n^2 + 13*n)/2 : n in [0..80]]; // Wesley Ivan Hurt, Dec 27 2023
-
Mathematica
Table[n (3 n + 13)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 8, 19}, 50] (* Harvey P. Dale, Dec 16 2011 *)
-
PARI
a(n)=n*(3*n+13)/2 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = (3*n^2 + 13*n)/2.
a(n) = 3*n + a(n-1) + 5 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=8, a(2)=19; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 16 2011
G.f.: x*(8 - 5*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 +16*x)*exp(x). - G. C. Greubel, Jul 17 2017