A140674 a(n) = n*(3*n + 17)/2.
0, 10, 23, 39, 58, 80, 105, 133, 164, 198, 235, 275, 318, 364, 413, 465, 520, 578, 639, 703, 770, 840, 913, 989, 1068, 1150, 1235, 1323, 1414, 1508, 1605, 1705, 1808, 1914, 2023, 2135, 2250, 2368, 2489, 2613, 2740, 2870, 3003, 3139
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(3*n + 17)/2: n in [0..70]]; // Wesley Ivan Hurt, Apr 21 2021
-
Mathematica
Table[(3*n^2 + 17*n)/2, {n, 0, 50}] (* G. C. Greubel, Jul 17 2017 *)
-
PARI
a(n)=n*(3*n+17)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = (3*n^2 + 17*n)/2.
a(n) = 7*n + 3*A000217(n). - Reinhard Zumkeller, May 28 2008
a(n) = 3*n + a(n-1) + 7 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: x*(10 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 20*x)*exp(x). - G. C. Greubel, Jul 17 2017