A140966 a(n) = (5 + (-2)^n)/3.
2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881, 1431655767, -2863311529, 5726623063
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,2).
Crossrefs
Programs
-
Magma
[( 5+(-2)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
-
Mathematica
(5+(-2)^Range[0,30])/3 (* or *) LinearRecurrence[{-1,2},{2,1},40] (* Harvey P. Dale, Apr 23 2019 *)
-
PARI
a(n)=(5+(-2)^n)/3 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = -a(n-1) + 2*a(n-2).
G.f.: (2+3*x)/((1-x)*(1+2*x)).
a(n+1) - a(n) = (-1)^(n+1)*A000079(n).
a(n+3) = (-1)^n*A083582(n).
a(n+1) - 2*a(n) = -a(n+2).
E.g.f.: (5*exp(x) + exp(-2*x))/3. - Stefano Spezia, Jul 27 2024
Extensions
Definition simplified by R. J. Mathar, Sep 11 2009
Comments