A141199 Number of hierarchical ordered partitions of partitions.
1, 1, 3, 7, 17, 38, 87, 191, 421, 911, 1963, 4186, 8885, 18724, 39284, 82005, 170521, 353214, 729290, 1501184, 3081869, 6311404, 12896983, 26301515, 53541702, 108815626, 220824295, 447524559, 905850001, 1831526719
Offset: 0
Keywords
Examples
n=1: [1] ------------------------- n=2: [1, 1], [1, "|", 1], [2] ------------------------- n=3: [1, 2], [1, "|", 1, "|", 1], [1, 1, 1], [3], [2, "|", 1], [1, 1, "|", 1], [1, "|", 2] ------------------------- n=4: [1, 1, 1, "|", 1], [1, 1, "|", 1, 1], [2, 2], [1, 3], [1, 1, 1, 1], [1, 1, 2], [4], [1, "|", 1, "|", 1, "|", 1], [1, 2, "|", 1], [1, 1, "|", 2], [1, 1, "|", 1, "|", 1], [2, "|", 1, "|", 1], [1, "|", 2, "|", 1], [1, "|", 1, "|", 2], [1, "|", 3], [3, "|", 1], [2, "|", 2].
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [_Thomas Wieder_, Nov 14 2009]
Crossrefs
Programs
-
Maple
A Maple program to generate these "hierarchically ordered partitions of partitions" is available on request. An asymptotic expansion can be found using the generating function given by Vladeta Jovovic. For that purpose we use the Maple program "equivalent" from Bruno Salvy (http://ago.inria.fr/libraries/libraries.html).
-
PARI
my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 18 2022
Formula
G.f.: 1/Product_{i>=1} (1-x^i/Product_{j=1..i} (1-x^j)). - Vladeta Jovovic, Jul 16 2008
Extensions
More terms from Vladeta Jovovic, Jul 16 2008
a(0)=1 prepended by Seiichi Manyama, Jan 18 2022
Comments